cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A246392 Numbers n such that Phi(10, n) is prime, where Phi is the cyclotomic polynomial.

Original entry on oeis.org

2, 3, 5, 10, 11, 12, 16, 20, 21, 22, 33, 37, 38, 43, 47, 48, 55, 71, 75, 76, 80, 81, 111, 121, 126, 131, 133, 135, 136, 141, 155, 157, 158, 165, 176, 177, 180, 203, 223, 242, 245, 251, 253, 256, 257, 258, 265, 268, 276, 286, 290, 297, 307, 322, 323, 342, 361, 363, 366, 375, 377, 385, 388, 396, 411
Offset: 1

Views

Author

Eric Chen, Nov 13 2014

Keywords

Comments

Numbers n such that (n^5+1)/(n+1) is prime, or numbers n such that A060884(n) is prime.

Crossrefs

Cf. A008864 (1), A006093 (2), A002384 (3), A005574 (4), A049409 (5), A055494 (6), A100330 (7), A000068 (8), A153439 (9), this sequence (10), A162862 (11), A246397 (12), A217070 (13), A006314 (16), A217071 (17), A164989 (18), A217072 (19), A217073 (23), A153440 (27), A217074 (29), A217075 (31), A006313 (32), A097475 (36), A217076 (37), A217077 (41), A217078 (43), A217079 (47), A217080 (53), A217081 (59), A217082 (61), A006315 (64), A217083 (67), A217084 (71), A217085 (73), A217086 (79), A153441 (81), A217087 (83), A217088 (89), A217089 (97), A006316 (128), A153442 (243), A056994 (256), A056995 (512), A057465 (1024), A057002 (2048), A088361 (4096), A088362 (8192), A226528 (16384), A226529 (32768), A226530 (65536).

Programs

  • Magma
    [n: n in [1..500]| IsPrime((n^5+1) div (n+1))]; // Vincenzo Librandi, Nov 14 2014
  • Maple
    A246392:=n->`if`(isprime((n^5+1)/(n+1)),n,NULL): seq(A246392(n), n=1..500); # Wesley Ivan Hurt, Nov 15 2014
  • Mathematica
    Select[Range[700], PrimeQ[(#^5 + 1) / (# + 1)] &] (* Vincenzo Librandi, Nov 14 2014 *)
  • PARI
    for(n=1,10^3,if(isprime(polcyclo(10,n)),print1(n,", "))); \\ Joerg Arndt, Nov 13 2014
    

A085398 Let Cn(x) be the n-th cyclotomic polynomial; a(n) is the least k>1 such that Cn(k) is prime.

Original entry on oeis.org

3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 6, 2, 4, 3, 2, 10, 2, 22, 2, 2, 4, 6, 2, 2, 2, 2, 2, 14, 3, 61, 2, 10, 2, 14, 2, 15, 25, 11, 2, 5, 5, 2, 6, 30, 11, 24, 7, 7, 2, 5, 7, 19, 3, 2, 2, 3, 30, 2, 9, 46, 85, 2, 3, 3, 3, 11, 16, 59, 7, 2, 2, 22, 2, 21, 61, 41, 7, 2, 2, 8, 5, 2, 2
Offset: 1

Views

Author

Don Reble, Jun 28 2003

Keywords

Comments

Conjecture: a(n) is defined for all n. - Eric Chen, Nov 14 2014
Existence of a(n) is implied by Bunyakovsky's conjecture. - Robert Israel, Nov 13 2014

Examples

			a(11) = 5 because C11(k) is composite for k = 2, 3, 4 and prime for k = 5.
a(37) = 61 because C37(k) is composite for k = 2, 3, 4, ..., 60 and prime for k = 61.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local k;
    for k from 2 do if isprime(numtheory:-cyclotomic(n,k)) then return k fi od
    end proc:
    seq(f(n), n = 1 .. 100); # Robert Israel, Nov 13 2014
  • Mathematica
    Table[k = 2; While[!PrimeQ[Cyclotomic[n, k]], k++]; k, {n, 300}] (* Eric Chen, Nov 14 2014 *)
  • PARI
    a(n) = k=2; while(!isprime(polcyclo(n, k)), k++); k; \\ Michel Marcus, Nov 13 2014

Formula

a(A072226(n)) = 2. - Eric Chen, Nov 14 2014
a(n) = A117544(n) except when n is a prime power, since if n is a prime power, then A117544(n) = 1. - Eric Chen, Nov 14 2014
a(prime(n)) = A066180(n), a(2*prime(n)) = A103795(n), a(2^n) = A056993(n-1), a(3^n) = A153438(n-1), a(2*3^n) = A246120(n-1), a(3*2^n) = A246119(n-1), a(6^n) = A246121(n-1), a(5^n) = A206418(n-1), a(6*A003586(n)) = A205506(n), a(10*A003592(n)) = A181980(n).

A250181 Numbers n such that Phi_26(n) is prime, where Phi is the cyclotomic polynomial.

Original entry on oeis.org

2, 3, 21, 22, 23, 35, 39, 74, 80, 84, 89, 108, 114, 121, 126, 134, 152, 153, 171, 180, 195, 204, 230, 256, 263, 297, 321, 326, 336, 342, 345, 351, 368, 390, 393, 397, 398, 399, 413, 427, 439, 490, 525, 563, 566, 574, 591, 602, 609, 630, 641, 652, 657, 660, 667, 682, 685, 694, 708, 712, 716, 721
Offset: 1

Views

Author

R. J. Mathar, Jan 09 2015

Keywords

Crossrefs

Cf. A246397.

Programs

  • Magma
    [n: n in [1..2000]| IsPrime((n^13+1) div (n+1))]; // Vincenzo Librandi, Jan 15 2015
    
  • Maple
    select(t -> isprime((t^13+1)/(t+1)), [$1..2000]); # Robert Israel, Jan 15 2015
  • Mathematica
    Select[Range[2000], PrimeQ[(#^13 + 1) / (# + 1)] &] (* Vincenzo Librandi, Jan 15 2015 *)
  • PARI
    is(n)=isprime(polcyclo(26,n)) \\ Charles R Greathouse IV, Sep 08 2015

A250177 Numbers n such that Phi_21(n) is prime, where Phi is the cyclotomic polynomial.

Original entry on oeis.org

3, 6, 7, 12, 22, 27, 28, 35, 41, 59, 63, 69, 112, 127, 132, 133, 136, 140, 164, 166, 202, 215, 218, 276, 288, 307, 323, 334, 343, 377, 383, 433, 474, 479, 516, 519, 521, 532, 538, 549, 575, 586, 622, 647, 675, 680, 692, 733, 790, 815, 822, 902, 909, 911, 915, 952, 966, 1025, 1034, 1048, 1093
Offset: 1

Views

Author

Eric Chen, Dec 24 2014

Keywords

Crossrefs

Cf. A008864 (1), A006093 (2), A002384 (3), A005574 (4), A049409 (5), A055494 (6), A100330 (7), A000068 (8), A153439 (9), A250392 (10), A162862 (11), A246397 (12), A217070 (13), A250174 (14), A250175 (15), A006314 (16), A217071 (17), A164989 (18), A217072 (19), A250176 (20), this sequence (21), A250178 (22), A217073 (23), A250179 (24), A250180 (25), A250181 (26), A153440 (27), A250182 (28), A217074 (29), A250183 (30), A217075 (31), A006313 (32), A250184 (33), A250185 (34), A250186 (35), A097475 (36), A217076 (37), A250187 (38), A250188 (39), A250189 (40), A217077 (41), A250190 (42), A217078 (43), A250191 (44), A250192 (45), A250193 (46), A217079 (47), A250194 (48), A250195 (49), A250196 (50), A217080 (53), A217081 (59), A217082 (61), A006315 (64), A217083 (67), A217084 (71), A217085 (73), A217086 (79), A153441 (81), A217087 (83), A217088 (89), A217089 (97), A006316 (128), A153442 (243), A056994 (256), A056995 (512), A057465 (1024), A057002 (2048), A088361 (4096), A088362 (8192), A226528 (16384), A226529 (32768), A226530 (65536), A251597 (131072), A244150 (524287), A243959 (1048576).
Cf. A085398 (Least k>1 such that Phi_n(k) is prime).

Programs

  • Mathematica
    a250177[n_] := Select[Range[n], PrimeQ@Cyclotomic[21, #] &]; a250177[1100] (* Michael De Vlieger, Dec 25 2014 *)
  • PARI
    {is(n)=isprime(polcyclo(21,n))};
    for(n=1,100, if(is(n)==1, print1(n, ", "), 0)) \\ G. C. Greubel, Apr 14 2018

A250175 Numbers n such that Phi_15(n) is prime, where Phi is the cyclotomic polynomial.

Original entry on oeis.org

2, 3, 11, 17, 23, 43, 46, 52, 53, 61, 62, 78, 84, 88, 89, 92, 99, 108, 123, 124, 141, 146, 154, 156, 158, 163, 170, 171, 182, 187, 202, 217, 219, 221, 229, 233, 238, 248, 249, 253, 264, 274, 275, 278, 283, 285, 287, 291, 296, 302, 309, 314, 315, 322, 325, 342, 346, 353, 356, 366, 368, 372, 377, 380, 384, 394, 404, 406, 411, 420, 425
Offset: 1

Views

Author

Eric Chen, Dec 24 2014

Keywords

Crossrefs

Cf. A008864 (1), A006093 (2), A002384 (3), A005574 (4), A049409 (5), A055494(6), A100330 (7), A000068 (8), A153439 (9), A246392 (10), A162862(11), A246397 (12), A217070 (13), A006314 (16), A217071 (17), A164989(18), A217072 (19), A217073 (23), A153440 (27), A217074 (29), A217075(31), A006313 (32), A097475 (36), A217076 (37), A217077 (41), A217078(43), A217079 (47), A217080 (53), A217081 (59), A217082 (61), A006315(64), A217083 (67), A217084 (71), A217085 (73), A217086 (79), A153441(81), A217087 (83), A217088 (89), A217089 (97), A006316 (128), A153442(243), A056994 (256), A056995 (512), A057465 (1024), A057002 (2048), A088361 (4096), A088362 (8192), A226528 (16384), A226529 (32768), A226530(65536).

Programs

  • Mathematica
    Select[Range[600], PrimeQ[Cyclotomic[15, #]] &] (* Vincenzo Librandi, Jan 16 2015 *)
  • PARI
    isok(n) = isprime(polcyclo(15, n)); \\ Michel Marcus, Jan 16 2015

Extensions

More terms from Vincenzo Librandi, Jan 16 2015

A250176 Numbers n such that Phi_20(n) is prime, where Phi is the cyclotomic polynomial.

Original entry on oeis.org

4, 9, 11, 16, 19, 26, 34, 45, 54, 70, 86, 91, 96, 101, 105, 109, 110, 119, 120, 126, 129, 139, 141, 149, 171, 181, 190, 195, 215, 229, 260, 276, 299, 305, 309, 311, 314, 319, 334, 339, 369, 375, 414, 420, 425, 444, 470, 479, 485, 506, 519, 534, 540, 550
Offset: 1

Views

Author

Eric Chen, Dec 24 2014

Keywords

Crossrefs

Cf. A008864 (1), A006093 (2), A002384 (3), A005574 (4), A049409 (5), A055494(6), A100330 (7), A000068 (8), A153439 (9), A246392 (10), A162862(11), A246397 (12), A217070 (13), A006314 (16), A217071 (17), A164989(18), A217072 (19), A217073 (23), A153440 (27), A217074 (29), A217075(31), A006313 (32), A097475 (36), A217076 (37), A217077 (41), A217078(43), A217079 (47), A217080 (53), A217081 (59), A217082 (61), A006315(64), A217083 (67), A217084 (71), A217085 (73), A217086 (79), A153441(81), A217087 (83), A217088 (89), A217089 (97), A006316 (128), A153442(243), A056994 (256), A056995 (512), A057465 (1024), A057002 (2048), A088361 (4096), A088362 (8192), A226528 (16384), A226529 (32768), A226530(65536).

Programs

  • Mathematica
    Select[Range[600], PrimeQ[Cyclotomic[20, #]] &] (* Vincenzo Librandi, Jan 16 2015 *)
  • PARI
    isok(n) = isprime(polcyclo(20, n)); \\ Michel Marcus, Sep 29 2015

Extensions

More terms from Vincenzo Librandi, Jan 16 2015

A253240 Square array read by antidiagonals: T(m, n) = Phi_m(n), the m-th cyclotomic polynomial at x=n.

Original entry on oeis.org

1, 1, -1, 1, 0, 1, 1, 1, 2, 1, 1, 2, 3, 3, 1, 1, 3, 4, 7, 2, 1, 1, 4, 5, 13, 5, 5, 1, 1, 5, 6, 21, 10, 31, 1, 1, 1, 6, 7, 31, 17, 121, 3, 7, 1, 1, 7, 8, 43, 26, 341, 7, 127, 2, 1, 1, 8, 9, 57, 37, 781, 13, 1093, 17, 3, 1, 1, 9, 10, 73, 50, 1555, 21, 5461, 82, 73, 1, 1, 1, 10, 11, 91, 65, 2801, 31, 19531, 257, 757, 11, 11, 1, 1, 11, 12, 111, 82, 4681, 43, 55987, 626, 4161, 61, 2047, 1, 1
Offset: 0

Views

Author

Eric Chen, Apr 22 2015

Keywords

Comments

Outside of rows 0, 1, 2 and columns 0, 1, only terms of A206942 occur.
Conjecture: There are infinitely many primes in every row (except row 0) and every column (except column 0), the indices of the first prime in n-th row and n-th column are listed in A117544 and A117545. (See A206864 for all the primes apart from row 0, 1, 2 and column 0, 1.)
Another conjecture: Except row 0, 1, 2 and column 0, 1, the only perfect powers in this table are 121 (=Phi_5(3)) and 343 (=Phi_3(18)=Phi_6(19)).

Examples

			Read by antidiagonals:
m\n  0   1   2   3   4   5   6   7   8   9  10  11  12
------------------------------------------------------
0    1   1   1   1   1   1   1   1   1   1   1   1   1
1   -1   0   1   2   3   4   5   6   7   8   9  10  11
2    1   2   3   4   5   6   7   8   9  10  11  12  13
3    1   3   7  13  21  31  43  57  73  91 111 133 157
4    1   2   5  10  17  26  37  50  65  82 101 122 145
5    1   5  31 121 341 781 ... ... ... ... ... ... ...
6    1   1   3   7  13  21  31  43  57  73  91 111 133
etc.
The cyclotomic polynomials are:
n        n-th cyclotomic polynomial
0        1
1        x-1
2        x+1
3        x^2+x+1
4        x^2+1
5        x^4+x^3+x^2+x+1
6        x^2-x+1
...
		

Crossrefs

Main diagonal is A070518.
Indices of primes in n-th column for n = 1-10 are A246655, A072226, A138933, A138934, A138935, A138936, A138937, A138938, A138939, A138940.
Indices of primes in main diagonal is A070519.
Cf. A117544 (indices of first prime in n-th row), A085398 (indices of first prime in n-th row apart from column 1), A117545 (indices of first prime in n-th column).
Cf. A206942 (all terms (sorted) for rows>2 and columns>1).
Cf. A206864 (all primes (sorted) for rows>2 and columns>1).

Programs

  • Mathematica
    Table[Cyclotomic[m, k-m], {k, 0, 49}, {m, 0, k}]
  • PARI
    t1(n)=n-binomial(floor(1/2+sqrt(2+2*n)), 2)
    t2(n)=binomial(floor(3/2+sqrt(2+2*n)), 2)-(n+1)
    T(m, n) = if(m==0, 1, polcyclo(m, n))
    a(n) = T(t1(n), t2(n))

Formula

T(m, n) = Phi_m(n)
Showing 1-7 of 7 results.