cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A100330 Positive integers k such that k^6 + k^5 + k^4 + k^3 + k^2 + k + 1 is prime.

Original entry on oeis.org

1, 2, 3, 5, 6, 13, 14, 17, 26, 31, 38, 40, 46, 56, 60, 61, 66, 68, 72, 73, 80, 87, 89, 93, 95, 115, 122, 126, 128, 146, 149, 156, 158, 160, 163, 180, 186, 192, 203, 206, 208, 220, 221, 235, 237, 238, 251, 264, 266, 280, 282, 290, 294, 300, 303, 320, 341, 349, 350
Offset: 1

Views

Author

Ray G. Opao, Nov 16 2004

Keywords

Comments

The corresponding primes are A088550. - Bernard Schott, Dec 20 2012
k = 5978493 * 2^150006 - 1 is an example of a very large term of this sequence. The generated prime is proved by the N-1 method (because k is prime and k*(k+1) is fully factored and this provides for an exactly 33.33...% factorization for Phi_7(k) - 1). - Serge Batalov, Mar 13 2015

Examples

			2 is in the sequence because 2^6 + 2^5 + 2^4 + 2^3 + 2^2 + 2 + 1 = 127, which is prime.
		

Crossrefs

Cf. A100331, A250174 (Phi_14(n) = n^6 - n^5 + n^4 - n^3 + n^2 - n + 1 primes; these two sequences can also be considered an extension of each other into negative n values), A250177 (Phi_21(n) primes).

Programs

  • Magma
    [n: n in [1..500]| IsPrime(n^6 + n^5 + n^4 + n^3 + n^2 + n + 1)]; // Vincenzo Librandi, Feb 08 2014
    
  • Maple
    A100330 := proc(n)
        option remember;
        local a;
        if n = 1 then
            1;
        else
            for a from procname(n-1)+1 do
                if isprime(numtheory[cyclotomic](7,a)) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A100330(n),n=1..30) ; # R. J. Mathar, Feb 07 2014
  • Mathematica
    Select[Range[350], PrimeQ[Sum[ #^i, {i, 0, 6}]] &] (* Ray Chandler, Nov 17 2004 *)
    Do[If[PrimeQ[n^6 + n^5 + n^4 + n^3 + n^2 + n + 1], Print[n]], {n, 1, 500}] (* Vincenzo Librandi, Feb 08 2014 *)
  • PARI
    is(n)=isprime(polcyclo(7,n)) \\ Charles R Greathouse IV, Apr 28 2015

A250174 Numbers n such that Phi_14(n) is prime, where Phi is the cyclotomic polynomial.

Original entry on oeis.org

2, 3, 10, 11, 14, 15, 16, 17, 18, 21, 24, 25, 29, 37, 43, 44, 46, 49, 52, 54, 61, 66, 72, 73, 78, 84, 86, 87, 99, 101, 106, 114, 115, 128, 133, 135, 136, 143, 145, 148, 164, 169, 170, 173, 200, 219, 224, 226, 228, 231, 234, 240, 248, 255, 262, 275, 281, 282, 298, 301
Offset: 1

Views

Author

Eric Chen, Dec 24 2014

Keywords

Comments

n = 9069 * 2^64163 + 1 is an example of a rather large member of this sequence. The generated 115914 decimal digit prime is proved by the N-1 method (because n is prime and n*(n-1) is fully factored and this provides for an exactly 33.33...% factorization for Phi_14(n) - 1). - Serge Batalov, Mar 13 2015

Examples

			2 is in the sequence because 2^6-2^5+2^4-2^3+2^2-2+1 = 43 which is prime.
		

Crossrefs

See A250177 for cross-references, A100330 (Phi_7(n) = n^6 + n^5 + n^4 + n^3 + n^2 + n + 1 primes; these two sequences can also be considered an extension of each other into negative n values), A250177 (Phi_21(n) primes).

Programs

  • Mathematica
    a250174[n_] := Select[Range[n], PrimeQ@Cyclotomic[14, #] &]; a250174[256]
  • PARI
    isok(n) = isprime(polcyclo(14, n)); \\ Michel Marcus, Mar 13 2015

A250178 Numbers k such that Phi_22(k) is prime, where Phi is the cyclotomic polynomial.

Original entry on oeis.org

2, 6, 12, 13, 23, 24, 26, 35, 62, 69, 91, 105, 147, 160, 163, 183, 185, 193, 229, 232, 233, 236, 248, 262, 269, 280, 294, 303, 315, 330, 376, 394, 426, 430, 440, 464, 469, 491, 492, 508, 537, 625, 629, 647, 653, 666, 752, 772, 775, 786, 788, 832, 840, 852, 854, 855, 859, 905, 922, 972, 993, 998
Offset: 1

Views

Author

Eric Chen, Dec 24 2014

Keywords

Comments

Numbers k such that (k^11+1)/(k+1) is a prime. - Vincenzo Librandi, May 21 2018

Crossrefs

See A250177 for references.

Programs

  • Magma
    [n: n in [1..1000]| IsPrime((n^11+1) div (n+1))]; // Vincenzo Librandi, May 21 2018
  • Mathematica
    a250178[n_] := Select[Range[n], PrimeQ@Cyclotomic[22, #] &]; a250178[1000] (* Michael De Vlieger, Dec 25 2014 *)
  • PARI
    isok(n) = isprime(polcyclo(22, n)); \\ Michel Marcus, Sep 29 2015
    

A250179 Numbers n such that Phi_24(n) is prime, where Phi is the cyclotomic polynomial.

Original entry on oeis.org

2, 3, 5, 6, 10, 13, 14, 15, 18, 25, 26, 27, 31, 34, 37, 39, 40, 42, 44, 46, 49, 50, 53, 59, 62, 63, 65, 68, 69, 75, 76, 77, 83, 87, 99, 100, 102, 104, 107, 110, 142, 152, 161, 166, 174, 175, 184, 187, 188, 191, 192, 199, 204, 207, 208, 213, 215, 222, 224, 227, 238, 244, 245, 247, 250, 256, 259, 263, 264, 265, 268, 274, 279, 286, 289, 303, 310, 311, 312, 314, 327, 332, 337, 339, 350, 353, 363, 366
Offset: 1

Views

Author

Eric Chen, Dec 24 2014

Keywords

Crossrefs

See A250177 for references.

Programs

  • Mathematica
    a250179[n_] := Select[Range[n], PrimeQ@Cyclotomic[24, #] &]; a250179[366] (* Michael De Vlieger, Dec 25 2014 *)
  • PARI
    {is(n)=isprime(polcyclo(24,n))};
    for(n=1,1000, if(is(n), print1(n, ", "))) \\ G. C. Greubel, May 20 2018

A250180 Numbers n such that Phi_25(n) is prime, where Phi is the cyclotomic polynomial.

Original entry on oeis.org

1, 22, 33, 39, 43, 62, 74, 134, 142, 167, 212, 238, 287, 313, 335, 369, 414, 415, 418, 432, 509, 604, 679, 697, 770, 782, 815, 859, 874, 895, 897, 924, 1039, 1048, 1070, 1085, 1134, 1145, 1170, 1177, 1212, 1239, 1240, 1262, 1339, 1347, 1364, 1374, 1407, 1413, 1414, 1449
Offset: 1

Views

Author

Eric Chen, Dec 26 2014

Keywords

Crossrefs

See A250177 for references.

Programs

  • Mathematica
    a250180[n_] := Select[Range[n], PrimeQ@Cyclotomic[25, #] &]; a250180[256]
  • PARI
    isok(n) = isprime(polcyclo(25, n)); \\ Michel Marcus, Dec 27 2014
Showing 1-5 of 5 results.