cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A084742 Least k such that (n^k+1)/(n+1) is prime, or 0 if no such prime exists.

Original entry on oeis.org

3, 3, 3, 5, 3, 3, 0, 3, 5, 5, 5, 3, 7, 3, 3, 7, 3, 17, 5, 3, 3, 11, 7, 3, 11, 0, 3, 7, 139, 109, 0, 5, 3, 11, 31, 5, 5, 3, 53, 17, 3, 5, 7, 103, 7, 5, 5, 7, 1153, 3, 7, 21943, 7, 3, 37, 53, 3, 17, 3, 7, 11, 3, 0, 19, 7, 3, 757, 11, 3, 5, 3, 7, 13, 5, 3, 37, 3, 3, 5, 3, 293, 19, 7, 167, 7, 7, 709, 13, 3, 3, 37, 89, 71, 43, 37
Offset: 2

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), Jun 15 2003

Keywords

Comments

When (n^k+1)/(n+1) is prime, k must be prime. As mentioned by Dubner and Granlund, when n is a perfect power (the power is greater than 2), then (n^k+1)/(n+1) will usually be composite for all k, which is the case for n = 8, 27, 32 and 64. a(n) are only probable primes for n = {53, 124, 150, 182, 205, 222, 296}.
a(n) = 0 if n = {8, 27, 32, 64, 125, 243, ...}. - Eric Chen, Nov 18 2014
More terms: a(124) = 16427, a(150) = 6883, a(182) = 1487, a(205) = 5449, a(222) = 1657, a(296) = 1303. For n up to 300, a(n) is currently unknown only for n = {97, 103, 113, 175, 186, 187, 188, 220, 284}. All other terms up to a(300) are less than 1000. - Eric Chen, Nov 18 2014
a(97) > 31000. - Eric Chen, Nov 18 2014
a(311) = 2707, a(313) = 4451. - Eric Chen, Nov 20 2014
a(n)=3 if and only if n^2-n+1 is a prime; that is, n belongs to A055494. - Thomas Ordowski, Sep 19 2015
From Altug Alkan, Sep 29 2015: (Start)
a(n)=5 if and only if Phi(10, n) is prime and Phi(6, n) is composite. n belongs to A246392.
a(n)=7 if and only if Phi(14, n) is prime, and Phi(10, n) and Phi(6, n) are both composite. n belongs to A250174.
a(n)=11 if and only if Phi(22, n) is prime, and Phi(14, n), Phi(10, n) and Phi(6, n) are all composite. n belongs to A250178.
Where Phi(k, n) is the k-th cyclotomic polynomial. (End)
a(97) > 800000 (or a(97) = 0). - Wang Runsen, May 10 2023

Examples

			a(5) = 5 as (5^5 + 1)/(5 + 1) = 1 - 5 + 5^2 - 5^3 + 5^4 = 521 is a prime.
a(7) = 3 as (7^3 + 1)/(7 + 1) = 1 - 7 + 7^2 = 43 is a prime.
		

Crossrefs

Programs

  • PARI
    a(n) = {l=List([8, 27, 32, 64, 125, 243, 324, 343]); for(q=1, #l, if(n==l[q], return(0))); k=2; while(k, s=(n^prime(k)+1)/(n+1); if(ispseudoprime(s), return(prime(k))); k++)}
    n=2; while(n<361, print1(a(n), ", "); n++) \\ Eric Chen, Nov 25 2014

Extensions

More terms from T. D. Noe, Jan 22 2004

A260558 Numbers k such that (k^29+1)/(k+1) is prime.

Original entry on oeis.org

7, 15, 25, 62, 119, 123, 154, 245, 285, 294, 295, 357, 371, 476, 626, 664, 690, 708, 723, 737, 768, 783, 803, 825, 826, 835, 841, 842, 867, 871, 897, 904, 934, 953, 1066, 1069, 1088, 1097, 1108, 1183, 1197, 1202, 1259, 1302, 1364, 1461, 1497, 1528, 1559, 1638
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Jul 29 2015

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [1..10000] |IsPrime((n^29 + 1) div (n + 1))];
  • Mathematica
    Select[Range[1, 10000], PrimeQ[(#^29 + 1)/(# + 1)] &]
  • PARI
    for(n=1,10000, if(isprime((n^29+1)/(n+1)), print1(n,", ")))
    

A260573 Numbers n such that (n^97+1)/(n+1) is prime.

Original entry on oeis.org

70, 121, 300, 317, 348, 404, 412, 460, 515, 605, 839, 843, 904, 953, 1130, 1148, 1342, 1466, 1674, 1779, 1855, 2080, 2108, 2193, 2466, 2519, 2597, 2633, 2697, 2756, 2793, 2799, 2846, 2877, 2899, 2929, 2952, 3081, 3244, 3283, 3300, 3315, 3636, 3730, 3739, 3833
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Jul 29 2015

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [1..10000] |IsPrime((n^97 + 1) div (n + 1))]
  • Mathematica
    Select[Range[1, 10000], PrimeQ[(#^97 + 1)/(# + 1)] &]
  • PARI
    for(n=1,10000, if(isprime((n^97+1)/(n+1)), print1(n,", ")))
    

A250177 Numbers n such that Phi_21(n) is prime, where Phi is the cyclotomic polynomial.

Original entry on oeis.org

3, 6, 7, 12, 22, 27, 28, 35, 41, 59, 63, 69, 112, 127, 132, 133, 136, 140, 164, 166, 202, 215, 218, 276, 288, 307, 323, 334, 343, 377, 383, 433, 474, 479, 516, 519, 521, 532, 538, 549, 575, 586, 622, 647, 675, 680, 692, 733, 790, 815, 822, 902, 909, 911, 915, 952, 966, 1025, 1034, 1048, 1093
Offset: 1

Views

Author

Eric Chen, Dec 24 2014

Keywords

Crossrefs

Cf. A008864 (1), A006093 (2), A002384 (3), A005574 (4), A049409 (5), A055494 (6), A100330 (7), A000068 (8), A153439 (9), A250392 (10), A162862 (11), A246397 (12), A217070 (13), A250174 (14), A250175 (15), A006314 (16), A217071 (17), A164989 (18), A217072 (19), A250176 (20), this sequence (21), A250178 (22), A217073 (23), A250179 (24), A250180 (25), A250181 (26), A153440 (27), A250182 (28), A217074 (29), A250183 (30), A217075 (31), A006313 (32), A250184 (33), A250185 (34), A250186 (35), A097475 (36), A217076 (37), A250187 (38), A250188 (39), A250189 (40), A217077 (41), A250190 (42), A217078 (43), A250191 (44), A250192 (45), A250193 (46), A217079 (47), A250194 (48), A250195 (49), A250196 (50), A217080 (53), A217081 (59), A217082 (61), A006315 (64), A217083 (67), A217084 (71), A217085 (73), A217086 (79), A153441 (81), A217087 (83), A217088 (89), A217089 (97), A006316 (128), A153442 (243), A056994 (256), A056995 (512), A057465 (1024), A057002 (2048), A088361 (4096), A088362 (8192), A226528 (16384), A226529 (32768), A226530 (65536), A251597 (131072), A244150 (524287), A243959 (1048576).
Cf. A085398 (Least k>1 such that Phi_n(k) is prime).

Programs

  • Mathematica
    a250177[n_] := Select[Range[n], PrimeQ@Cyclotomic[21, #] &]; a250177[1100] (* Michael De Vlieger, Dec 25 2014 *)
  • PARI
    {is(n)=isprime(polcyclo(21,n))};
    for(n=1,100, if(is(n)==1, print1(n, ", "), 0)) \\ G. C. Greubel, Apr 14 2018

A260559 Numbers k such that (k^31+1)/(k+1) is prime.

Original entry on oeis.org

2, 6, 10, 36, 65, 74, 78, 83, 106, 115, 120, 148, 161, 163, 168, 176, 189, 194, 197, 266, 270, 288, 331, 385, 399, 407, 410, 412, 413, 431, 468, 513, 524, 546, 569, 572, 578, 581, 600, 611, 625, 626, 647, 719, 723, 756, 832, 834, 849, 922, 986, 1006, 1007, 1047
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Jul 29 2015

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [1..10000] |IsPrime((n^31 + 1) div (n + 1))];
  • Mathematica
    Select[Range[1, 10000], PrimeQ[(#^31 + 1)/(# + 1)] &]
  • PARI
    for(n=1,10000, if(isprime((n^31+1)/(n+1)), print1(n,", ")))
    

A260560 Numbers n such that (n^37+1)/(n+1) is prime.

Original entry on oeis.org

16, 19, 21, 49, 56, 63, 71, 74, 77, 83, 92, 96, 99, 160, 172, 197, 198, 230, 241, 280, 283, 415, 425, 448, 490, 520, 627, 691, 735, 784, 803, 829, 842, 853, 871, 872, 893, 894, 973, 981, 989, 1043, 1060, 1061, 1071, 1179, 1182, 1203, 1290, 1299, 1317, 1370, 1389
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Jul 29 2015

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [1..10000] |IsPrime((n^37 + 1) div (n + 1))]
  • Mathematica
    Select[Range[1, 10000], PrimeQ[(#^37 + 1)/(# + 1)] &]
  • PARI
    for(n=1,10000, if(isprime((n^37+1)/(n+1)), print1(n,", ")))
    

A260571 Numbers n such that (n^83+1)/(n+1) is prime.

Original entry on oeis.org

49, 75, 458, 471, 634, 734, 798, 809, 932, 1139, 1268, 1400, 1498, 1963, 1989, 2112, 2177, 2233, 2252, 2349, 2365, 2446, 2729, 2841, 2861, 2887, 3013, 3048, 3239, 3262, 3403, 3464, 3703, 3855, 3883, 4534, 5147, 5189, 5523, 5611, 5778, 6041, 6200, 6336, 6682, 7068
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Jul 29 2015

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [1..10000] |IsPrime((n^83 + 1) div (n + 1))]
  • Mathematica
    Select[Range[1, 10000], PrimeQ[(#^83 + 1)/(# + 1)] &]
  • PARI
    for(n=1,10000, if(isprime((n^83+1)/(n+1)), print1(n,", ")))
    

A260572 Numbers n such that (n^89+1)/(n+1) is prime.

Original entry on oeis.org

16, 20, 93, 195, 227, 325, 465, 758, 888, 911, 1075, 1301, 1590, 1640, 1783, 1807, 2168, 2204, 2231, 2376, 2528, 2591, 2627, 2648, 2909, 2959, 3063, 3109, 3650, 3688, 3709, 3784, 3910, 3943, 4132, 4162, 4385, 4417, 4443, 4613, 5183, 5465, 5574, 5750, 5854, 5975
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Jul 29 2015

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [1..10000] |IsPrime((n^89 + 1) div (n + 1))]
  • Mathematica
    Select[Range[1, 10000], PrimeQ[(#^89 + 1)/(# + 1)] &]
  • PARI
    for(n=1,10000, if(isprime((n^89+1)/(n+1)), print1(n,", ")))
    

A260561 Numbers n such that (n^41+1)/(n+1) is prime.

Original entry on oeis.org

61, 63, 99, 144, 230, 312, 360, 401, 413, 424, 451, 515, 542, 567, 610, 618, 622, 651, 690, 732, 817, 871, 1007, 1100, 1156, 1278, 1403, 1427, 1460, 1535, 1572, 1604, 1681, 1742, 1802, 1820, 1847, 1903, 1910, 1913, 1978, 2019, 2104, 2134, 2152, 2169, 2309, 2383
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Jul 29 2015

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [1..10000] |IsPrime((n^41 + 1) div (n + 1))]
  • Mathematica
    Select[Range[1, 10000], PrimeQ[(#^41 + 1)/(# + 1)] &]
  • PARI
    for(n=1,10000, if(isprime((n^41+1)/(n+1)), print1(n,", ")))
    

A260562 Numbers n such that (n^43+1)/(n+1) is prime.

Original entry on oeis.org

2, 3, 6, 22, 59, 83, 91, 95, 120, 148, 195, 196, 201, 247, 252, 264, 315, 360, 378, 458, 555, 680, 792, 893, 1025, 1088, 1158, 1171, 1240, 1280, 1416, 1437, 1632, 1661, 1677, 1681, 1849, 1946, 1960, 2007, 2090, 2092, 2225, 2242, 2244, 2377, 2483, 2547, 2596, 2641
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Jul 29 2015

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [1..10000] |IsPrime((n^43 + 1) div (n + 1))]
  • Mathematica
    Select[Range[1, 10000], PrimeQ[(#^43 + 1)/(# + 1)] &]
  • PARI
    for(n=1,10000, if(isprime((n^43+1)/(n+1)), print1(n,", ")))
    
Showing 1-10 of 18 results. Next