cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A100330 Positive integers k such that k^6 + k^5 + k^4 + k^3 + k^2 + k + 1 is prime.

Original entry on oeis.org

1, 2, 3, 5, 6, 13, 14, 17, 26, 31, 38, 40, 46, 56, 60, 61, 66, 68, 72, 73, 80, 87, 89, 93, 95, 115, 122, 126, 128, 146, 149, 156, 158, 160, 163, 180, 186, 192, 203, 206, 208, 220, 221, 235, 237, 238, 251, 264, 266, 280, 282, 290, 294, 300, 303, 320, 341, 349, 350
Offset: 1

Views

Author

Ray G. Opao, Nov 16 2004

Keywords

Comments

The corresponding primes are A088550. - Bernard Schott, Dec 20 2012
k = 5978493 * 2^150006 - 1 is an example of a very large term of this sequence. The generated prime is proved by the N-1 method (because k is prime and k*(k+1) is fully factored and this provides for an exactly 33.33...% factorization for Phi_7(k) - 1). - Serge Batalov, Mar 13 2015

Examples

			2 is in the sequence because 2^6 + 2^5 + 2^4 + 2^3 + 2^2 + 2 + 1 = 127, which is prime.
		

Crossrefs

Cf. A100331, A250174 (Phi_14(n) = n^6 - n^5 + n^4 - n^3 + n^2 - n + 1 primes; these two sequences can also be considered an extension of each other into negative n values), A250177 (Phi_21(n) primes).

Programs

  • Magma
    [n: n in [1..500]| IsPrime(n^6 + n^5 + n^4 + n^3 + n^2 + n + 1)]; // Vincenzo Librandi, Feb 08 2014
    
  • Maple
    A100330 := proc(n)
        option remember;
        local a;
        if n = 1 then
            1;
        else
            for a from procname(n-1)+1 do
                if isprime(numtheory[cyclotomic](7,a)) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A100330(n),n=1..30) ; # R. J. Mathar, Feb 07 2014
  • Mathematica
    Select[Range[350], PrimeQ[Sum[ #^i, {i, 0, 6}]] &] (* Ray Chandler, Nov 17 2004 *)
    Do[If[PrimeQ[n^6 + n^5 + n^4 + n^3 + n^2 + n + 1], Print[n]], {n, 1, 500}] (* Vincenzo Librandi, Feb 08 2014 *)
  • PARI
    is(n)=isprime(polcyclo(7,n)) \\ Charles R Greathouse IV, Apr 28 2015

A084742 Least k such that (n^k+1)/(n+1) is prime, or 0 if no such prime exists.

Original entry on oeis.org

3, 3, 3, 5, 3, 3, 0, 3, 5, 5, 5, 3, 7, 3, 3, 7, 3, 17, 5, 3, 3, 11, 7, 3, 11, 0, 3, 7, 139, 109, 0, 5, 3, 11, 31, 5, 5, 3, 53, 17, 3, 5, 7, 103, 7, 5, 5, 7, 1153, 3, 7, 21943, 7, 3, 37, 53, 3, 17, 3, 7, 11, 3, 0, 19, 7, 3, 757, 11, 3, 5, 3, 7, 13, 5, 3, 37, 3, 3, 5, 3, 293, 19, 7, 167, 7, 7, 709, 13, 3, 3, 37, 89, 71, 43, 37
Offset: 2

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), Jun 15 2003

Keywords

Comments

When (n^k+1)/(n+1) is prime, k must be prime. As mentioned by Dubner and Granlund, when n is a perfect power (the power is greater than 2), then (n^k+1)/(n+1) will usually be composite for all k, which is the case for n = 8, 27, 32 and 64. a(n) are only probable primes for n = {53, 124, 150, 182, 205, 222, 296}.
a(n) = 0 if n = {8, 27, 32, 64, 125, 243, ...}. - Eric Chen, Nov 18 2014
More terms: a(124) = 16427, a(150) = 6883, a(182) = 1487, a(205) = 5449, a(222) = 1657, a(296) = 1303. For n up to 300, a(n) is currently unknown only for n = {97, 103, 113, 175, 186, 187, 188, 220, 284}. All other terms up to a(300) are less than 1000. - Eric Chen, Nov 18 2014
a(97) > 31000. - Eric Chen, Nov 18 2014
a(311) = 2707, a(313) = 4451. - Eric Chen, Nov 20 2014
a(n)=3 if and only if n^2-n+1 is a prime; that is, n belongs to A055494. - Thomas Ordowski, Sep 19 2015
From Altug Alkan, Sep 29 2015: (Start)
a(n)=5 if and only if Phi(10, n) is prime and Phi(6, n) is composite. n belongs to A246392.
a(n)=7 if and only if Phi(14, n) is prime, and Phi(10, n) and Phi(6, n) are both composite. n belongs to A250174.
a(n)=11 if and only if Phi(22, n) is prime, and Phi(14, n), Phi(10, n) and Phi(6, n) are all composite. n belongs to A250178.
Where Phi(k, n) is the k-th cyclotomic polynomial. (End)
a(97) > 800000 (or a(97) = 0). - Wang Runsen, May 10 2023

Examples

			a(5) = 5 as (5^5 + 1)/(5 + 1) = 1 - 5 + 5^2 - 5^3 + 5^4 = 521 is a prime.
a(7) = 3 as (7^3 + 1)/(7 + 1) = 1 - 7 + 7^2 = 43 is a prime.
		

Crossrefs

Programs

  • PARI
    a(n) = {l=List([8, 27, 32, 64, 125, 243, 324, 343]); for(q=1, #l, if(n==l[q], return(0))); k=2; while(k, s=(n^prime(k)+1)/(n+1); if(ispseudoprime(s), return(prime(k))); k++)}
    n=2; while(n<361, print1(a(n), ", "); n++) \\ Eric Chen, Nov 25 2014

Extensions

More terms from T. D. Noe, Jan 22 2004

A260558 Numbers k such that (k^29+1)/(k+1) is prime.

Original entry on oeis.org

7, 15, 25, 62, 119, 123, 154, 245, 285, 294, 295, 357, 371, 476, 626, 664, 690, 708, 723, 737, 768, 783, 803, 825, 826, 835, 841, 842, 867, 871, 897, 904, 934, 953, 1066, 1069, 1088, 1097, 1108, 1183, 1197, 1202, 1259, 1302, 1364, 1461, 1497, 1528, 1559, 1638
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Jul 29 2015

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [1..10000] |IsPrime((n^29 + 1) div (n + 1))];
  • Mathematica
    Select[Range[1, 10000], PrimeQ[(#^29 + 1)/(# + 1)] &]
  • PARI
    for(n=1,10000, if(isprime((n^29+1)/(n+1)), print1(n,", ")))
    

A260573 Numbers n such that (n^97+1)/(n+1) is prime.

Original entry on oeis.org

70, 121, 300, 317, 348, 404, 412, 460, 515, 605, 839, 843, 904, 953, 1130, 1148, 1342, 1466, 1674, 1779, 1855, 2080, 2108, 2193, 2466, 2519, 2597, 2633, 2697, 2756, 2793, 2799, 2846, 2877, 2899, 2929, 2952, 3081, 3244, 3283, 3300, 3315, 3636, 3730, 3739, 3833
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Jul 29 2015

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [1..10000] |IsPrime((n^97 + 1) div (n + 1))]
  • Mathematica
    Select[Range[1, 10000], PrimeQ[(#^97 + 1)/(# + 1)] &]
  • PARI
    for(n=1,10000, if(isprime((n^97+1)/(n+1)), print1(n,", ")))
    

A250177 Numbers n such that Phi_21(n) is prime, where Phi is the cyclotomic polynomial.

Original entry on oeis.org

3, 6, 7, 12, 22, 27, 28, 35, 41, 59, 63, 69, 112, 127, 132, 133, 136, 140, 164, 166, 202, 215, 218, 276, 288, 307, 323, 334, 343, 377, 383, 433, 474, 479, 516, 519, 521, 532, 538, 549, 575, 586, 622, 647, 675, 680, 692, 733, 790, 815, 822, 902, 909, 911, 915, 952, 966, 1025, 1034, 1048, 1093
Offset: 1

Views

Author

Eric Chen, Dec 24 2014

Keywords

Crossrefs

Cf. A008864 (1), A006093 (2), A002384 (3), A005574 (4), A049409 (5), A055494 (6), A100330 (7), A000068 (8), A153439 (9), A250392 (10), A162862 (11), A246397 (12), A217070 (13), A250174 (14), A250175 (15), A006314 (16), A217071 (17), A164989 (18), A217072 (19), A250176 (20), this sequence (21), A250178 (22), A217073 (23), A250179 (24), A250180 (25), A250181 (26), A153440 (27), A250182 (28), A217074 (29), A250183 (30), A217075 (31), A006313 (32), A250184 (33), A250185 (34), A250186 (35), A097475 (36), A217076 (37), A250187 (38), A250188 (39), A250189 (40), A217077 (41), A250190 (42), A217078 (43), A250191 (44), A250192 (45), A250193 (46), A217079 (47), A250194 (48), A250195 (49), A250196 (50), A217080 (53), A217081 (59), A217082 (61), A006315 (64), A217083 (67), A217084 (71), A217085 (73), A217086 (79), A153441 (81), A217087 (83), A217088 (89), A217089 (97), A006316 (128), A153442 (243), A056994 (256), A056995 (512), A057465 (1024), A057002 (2048), A088361 (4096), A088362 (8192), A226528 (16384), A226529 (32768), A226530 (65536), A251597 (131072), A244150 (524287), A243959 (1048576).
Cf. A085398 (Least k>1 such that Phi_n(k) is prime).

Programs

  • Mathematica
    a250177[n_] := Select[Range[n], PrimeQ@Cyclotomic[21, #] &]; a250177[1100] (* Michael De Vlieger, Dec 25 2014 *)
  • PARI
    {is(n)=isprime(polcyclo(21,n))};
    for(n=1,100, if(is(n)==1, print1(n, ", "), 0)) \\ G. C. Greubel, Apr 14 2018

A253240 Square array read by antidiagonals: T(m, n) = Phi_m(n), the m-th cyclotomic polynomial at x=n.

Original entry on oeis.org

1, 1, -1, 1, 0, 1, 1, 1, 2, 1, 1, 2, 3, 3, 1, 1, 3, 4, 7, 2, 1, 1, 4, 5, 13, 5, 5, 1, 1, 5, 6, 21, 10, 31, 1, 1, 1, 6, 7, 31, 17, 121, 3, 7, 1, 1, 7, 8, 43, 26, 341, 7, 127, 2, 1, 1, 8, 9, 57, 37, 781, 13, 1093, 17, 3, 1, 1, 9, 10, 73, 50, 1555, 21, 5461, 82, 73, 1, 1, 1, 10, 11, 91, 65, 2801, 31, 19531, 257, 757, 11, 11, 1, 1, 11, 12, 111, 82, 4681, 43, 55987, 626, 4161, 61, 2047, 1, 1
Offset: 0

Views

Author

Eric Chen, Apr 22 2015

Keywords

Comments

Outside of rows 0, 1, 2 and columns 0, 1, only terms of A206942 occur.
Conjecture: There are infinitely many primes in every row (except row 0) and every column (except column 0), the indices of the first prime in n-th row and n-th column are listed in A117544 and A117545. (See A206864 for all the primes apart from row 0, 1, 2 and column 0, 1.)
Another conjecture: Except row 0, 1, 2 and column 0, 1, the only perfect powers in this table are 121 (=Phi_5(3)) and 343 (=Phi_3(18)=Phi_6(19)).

Examples

			Read by antidiagonals:
m\n  0   1   2   3   4   5   6   7   8   9  10  11  12
------------------------------------------------------
0    1   1   1   1   1   1   1   1   1   1   1   1   1
1   -1   0   1   2   3   4   5   6   7   8   9  10  11
2    1   2   3   4   5   6   7   8   9  10  11  12  13
3    1   3   7  13  21  31  43  57  73  91 111 133 157
4    1   2   5  10  17  26  37  50  65  82 101 122 145
5    1   5  31 121 341 781 ... ... ... ... ... ... ...
6    1   1   3   7  13  21  31  43  57  73  91 111 133
etc.
The cyclotomic polynomials are:
n        n-th cyclotomic polynomial
0        1
1        x-1
2        x+1
3        x^2+x+1
4        x^2+1
5        x^4+x^3+x^2+x+1
6        x^2-x+1
...
		

Crossrefs

Main diagonal is A070518.
Indices of primes in n-th column for n = 1-10 are A246655, A072226, A138933, A138934, A138935, A138936, A138937, A138938, A138939, A138940.
Indices of primes in main diagonal is A070519.
Cf. A117544 (indices of first prime in n-th row), A085398 (indices of first prime in n-th row apart from column 1), A117545 (indices of first prime in n-th column).
Cf. A206942 (all terms (sorted) for rows>2 and columns>1).
Cf. A206864 (all primes (sorted) for rows>2 and columns>1).

Programs

  • Mathematica
    Table[Cyclotomic[m, k-m], {k, 0, 49}, {m, 0, k}]
  • PARI
    t1(n)=n-binomial(floor(1/2+sqrt(2+2*n)), 2)
    t2(n)=binomial(floor(3/2+sqrt(2+2*n)), 2)-(n+1)
    T(m, n) = if(m==0, 1, polcyclo(m, n))
    a(n) = T(t1(n), t2(n))

Formula

T(m, n) = Phi_m(n)

A260559 Numbers k such that (k^31+1)/(k+1) is prime.

Original entry on oeis.org

2, 6, 10, 36, 65, 74, 78, 83, 106, 115, 120, 148, 161, 163, 168, 176, 189, 194, 197, 266, 270, 288, 331, 385, 399, 407, 410, 412, 413, 431, 468, 513, 524, 546, 569, 572, 578, 581, 600, 611, 625, 626, 647, 719, 723, 756, 832, 834, 849, 922, 986, 1006, 1007, 1047
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Jul 29 2015

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [1..10000] |IsPrime((n^31 + 1) div (n + 1))];
  • Mathematica
    Select[Range[1, 10000], PrimeQ[(#^31 + 1)/(# + 1)] &]
  • PARI
    for(n=1,10000, if(isprime((n^31+1)/(n+1)), print1(n,", ")))
    

A260560 Numbers n such that (n^37+1)/(n+1) is prime.

Original entry on oeis.org

16, 19, 21, 49, 56, 63, 71, 74, 77, 83, 92, 96, 99, 160, 172, 197, 198, 230, 241, 280, 283, 415, 425, 448, 490, 520, 627, 691, 735, 784, 803, 829, 842, 853, 871, 872, 893, 894, 973, 981, 989, 1043, 1060, 1061, 1071, 1179, 1182, 1203, 1290, 1299, 1317, 1370, 1389
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Jul 29 2015

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [1..10000] |IsPrime((n^37 + 1) div (n + 1))]
  • Mathematica
    Select[Range[1, 10000], PrimeQ[(#^37 + 1)/(# + 1)] &]
  • PARI
    for(n=1,10000, if(isprime((n^37+1)/(n+1)), print1(n,", ")))
    

A260571 Numbers n such that (n^83+1)/(n+1) is prime.

Original entry on oeis.org

49, 75, 458, 471, 634, 734, 798, 809, 932, 1139, 1268, 1400, 1498, 1963, 1989, 2112, 2177, 2233, 2252, 2349, 2365, 2446, 2729, 2841, 2861, 2887, 3013, 3048, 3239, 3262, 3403, 3464, 3703, 3855, 3883, 4534, 5147, 5189, 5523, 5611, 5778, 6041, 6200, 6336, 6682, 7068
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Jul 29 2015

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [1..10000] |IsPrime((n^83 + 1) div (n + 1))]
  • Mathematica
    Select[Range[1, 10000], PrimeQ[(#^83 + 1)/(# + 1)] &]
  • PARI
    for(n=1,10000, if(isprime((n^83+1)/(n+1)), print1(n,", ")))
    

A260572 Numbers n such that (n^89+1)/(n+1) is prime.

Original entry on oeis.org

16, 20, 93, 195, 227, 325, 465, 758, 888, 911, 1075, 1301, 1590, 1640, 1783, 1807, 2168, 2204, 2231, 2376, 2528, 2591, 2627, 2648, 2909, 2959, 3063, 3109, 3650, 3688, 3709, 3784, 3910, 3943, 4132, 4162, 4385, 4417, 4443, 4613, 5183, 5465, 5574, 5750, 5854, 5975
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Jul 29 2015

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [1..10000] |IsPrime((n^89 + 1) div (n + 1))]
  • Mathematica
    Select[Range[1, 10000], PrimeQ[(#^89 + 1)/(# + 1)] &]
  • PARI
    for(n=1,10000, if(isprime((n^89+1)/(n+1)), print1(n,", ")))
    
Showing 1-10 of 20 results. Next