cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 87 results. Next

A001479 Let p = A007645(n) be the n-th generalized cuban prime and write p = x^2 + 3*y^2; a(n) = x.

Original entry on oeis.org

0, 2, 1, 4, 2, 5, 4, 7, 8, 5, 2, 7, 10, 1, 10, 8, 2, 7, 4, 13, 1, 14, 8, 14, 11, 7, 14, 13, 16, 8, 11, 16, 17, 7, 2, 19, 4, 17, 19, 11, 1, 14, 5, 10, 22, 16, 4, 23, 20, 8, 23, 13, 10, 5, 16, 22, 20, 19, 25, 4, 11, 22, 25, 8, 26, 13, 1, 28, 28, 26, 23, 29, 28
Offset: 1

Views

Author

Keywords

References

  • A. J. C. Cunningham, Quadratic Partitions. Hodgson, London, 1904, p. 1.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • B. van der Pol and P. Speziali, The primes in k(rho). Nederl. Akad. Wetensch. Proc. Ser. A. {54} = Indagationes Math. 13, (1951). 9-15 (1 plate).

Crossrefs

Programs

  • Haskell
    a001479 n = a000196 $ head $
       filter ((== 1) . a010052) $ map (a007645 n -) $ tail a033428_list
    -- Reinhard Zumkeller, Jul 11 2013
    
  • Mathematica
    nmax = 56; nextCuban[p_] := If[p1 = NextPrime[p]; Mod[p1, 3] > 1, nextCuban[p1], p1]; cubanPrimes = NestList[ nextCuban, 3, nmax ]; f[p_] := x /. ToRules[ Reduce[x > 0 && y > 0 && p == x^2 + 3*y^2, {x, y}, Integers]]; a[1] = 0; a[n_] := f[cubanPrimes[[n]]]; Table[ a[n] , {n, 1, nmax}] (* Jean-François Alcover, Oct 19 2011 *)
  • PARI
    do(lim)=my(v=List(), q=Qfb(1,0,3)); forprime(p=2,lim, if(p%3==2,next); listput(v, qfbsolve(q,p)[1])); Vec(v) \\ Charles R Greathouse IV, Feb 07 2017

Extensions

Definition revised by N. J. A. Sloane, Jan 29 2013

A001480 Let p = A007645(n) be the n-th generalized cuban prime and write p = x^2 + 3*y^2; a(n) = y.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 3, 2, 1, 4, 5, 4, 1, 6, 3, 5, 7, 6, 7, 2, 8, 1, 7, 3, 6, 8, 5, 6, 3, 9, 8, 5, 4, 10, 11, 2, 11, 6, 4, 10, 12, 9, 12, 11, 1, 9, 13, 2, 7, 13, 4, 12, 13, 14, 11, 7, 9, 10, 4, 15, 14, 9, 6, 15, 5, 14, 16, 1, 3, 7, 10, 2, 5, 14, 17, 13, 9, 16, 17
Offset: 1

Views

Author

Keywords

Comments

a(n) = A000196((A007645(n) - A000290(A001479(n))) / 3). - Reinhard Zumkeller, Jul 11 2013

References

  • A. J. C. Cunningham, Quadratic Partitions. Hodgson, London, 1904, p. 1.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • B. van der Pol and P. Speziali, The primes in k(rho). Nederl. Akad. Wetensch. Proc. Ser. A. {54} = Indagationes Math. 13, (1951). 9-15 (1 plate).

Crossrefs

Programs

  • Haskell
    a001480 n = a000196 $ (`div` 3) $ (a007645 n) - (a001479 n) ^ 2
    -- Reinhard Zumkeller, Jul 11 2013
    
  • Mathematica
    nmax = 63; nextCuban[p_] := If[p1 = NextPrime[p]; Mod[p1, 3] > 1, nextCuban[p1], p1]; cubanPrimes = NestList[ nextCuban, 3, nmax ]; f[p_] := y /. ToRules[ Reduce[x > 0 && y > 0 && p == x^2 + 3*y^2, {x, y}, Integers]]; a[1] = 1; a[n_] := f[cubanPrimes[[n]]]; Table[ a[n] , {n, 1, nmax}] (* Jean-François Alcover, Oct 19 2011 *)
  • PARI
    do(lim)=my(v=List(), q=Qfb(1,0,3)); forprime(p=2,lim, if(p%3==2,next); listput(v, qfbsolve(q,p)[2])); Vec(v) \\ Charles R Greathouse IV, Feb 07 2017

Extensions

Definition revised by N. J. A. Sloane, Jan 29 2013

A002367 Let p = A007645(n) be the n-th generalized cuban prime and write p^2 = x^2 + 3*y^2 with y > 0; a(n) = x.

Original entry on oeis.org

1, 11, 13, 23, 13, 11, 37, 61, 23, 71, 1, 97, 107, 73, 11, 143, 59, 131, 157, 191, 193, 83, 169, 13, 143, 121, 61, 229, 179, 71, 181, 241, 251, 359, 349, 347, 181, 313, 179, 431, 47, 407, 263, 481, 13, 491, 517, 253, 443, 481, 263, 407, 563, 107, 337, 157, 61
Offset: 2

Views

Author

Keywords

References

  • A. J. C. Cunningham, Quadratic and Linear Tables. Hodgson, London, 1927, pp. 77-79.
  • D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 60.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

Name improved and offset changed by T. D. Noe, Apr 13 2010

A002368 Let p = A007645(n) be the n-th generalized cuban prime and write p^2 = x^2 + 3*y^2 with y > 0; a(n) = y.

Original entry on oeis.org

4, 4, 8, 12, 20, 24, 28, 16, 40, 20, 56, 20, 12, 60, 80, 28, 84, 56, 52, 16, 28, 112, 84, 132, 112, 140, 156, 96, 144, 176, 160, 136, 140, 44, 76, 88, 204, 152, 220, 24, 252, 120, 220, 44, 288, 104, 92, 280, 208, 184, 312, 260, 140, 352, 308, 360, 380, 200
Offset: 2

Views

Author

Keywords

References

  • A. J. C. Cunningham, Quadratic and Linear Tables. Hodgson, London, 1927, pp. 77-79.
  • D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 60.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

Name improved and offset changed by T. D. Noe, Apr 13 2010

A107890 Semiprimes that are the product of two members of A007645.

Original entry on oeis.org

9, 21, 39, 49, 57, 91, 93, 111, 129, 133, 169, 183, 201, 217, 219, 237, 247, 259, 291, 301, 309, 327, 361, 381, 403, 417, 427, 453, 469, 471, 481, 489, 511, 543, 553, 559, 579, 589, 597, 633, 669, 679, 687, 703, 721, 723, 763, 793, 813, 817, 831, 849, 871
Offset: 1

Views

Author

Jonathan Vos Post, Jun 12 2005

Keywords

References

  • Conway, J. H. and Guy, R. K., The Book of Numbers. New York: Springer-Verlag, pp. 220-223, 1996.
  • Wagon, S. "Eisenstein Primes." Section 9.8 in Mathematica in Action. New York: W. H. Freeman, pp. 319-323, 1991.

Crossrefs

Programs

  • Maple
    N:= 1000: # for terms <= N
    P:= [3,op(select(isprime, [seq(i,i=1..N/3,6)]))]:
    R:= NULL:
    for i from 1 while P[i]^2 <= N do
      m:= ListTools:-BinaryPlace(P,N/P[i]+1/2);
      R:= R, seq(P[i]*P[j],j=i..m);
    od:
    sort([R]); # Robert Israel, Aug 28 2020

Formula

{a(n)} = {p*q: p and q both elements of A007645} = {p*q: p and q both of form 3*m^2 * n^2 for integers m, n}.

Extensions

Edited by Ray Chandler, Oct 15 2005
Definition corrected by N. J. A. Sloane, Feb 06 2008

A172113 Partial sums of the generalized Cuban primes A007645.

Original entry on oeis.org

3, 10, 23, 42, 73, 110, 153, 214, 281, 354, 433, 530, 633, 742, 869, 1008, 1159, 1316, 1479, 1660, 1853, 2052, 2263, 2486, 2715, 2956, 3227, 3504, 3787, 4094, 4407, 4738, 5075, 5424, 5791, 6164, 6543, 6940, 7349, 7770, 8203, 8642, 9099, 9562, 10049
Offset: 1

Views

Author

Jonathan Vos Post, Jan 25 2010

Keywords

Comments

Partial sums of primes of the form 3*m+1/2+-1/2. - Juri-Stepan Gerasimov, Jan 29 2010. E.g. a(1)=3*1+1/2-1/2=3, a(2)=3+3*2+1/2+1/2=10.
The primes in this sequence begin: a(1) = 3, a(3) = 23, a(5) = 73, a(9) = 281, a(11) = 433. Of these, the subset of generalized cuban primes which are partial sums of generalized cuban primes begins: 3, 73, 433.

Examples

			a(30) = 3 + 7 + 13 + 19 + 31 + 37 + 43 + 61 + 67 + 73 + 79 + 97 + 103 + 109 + 127 + 139 + 151 + 157 + 163 + 181 + 193 + 199 + 211 + 223 + 229 + 241 + 271 + 277 + 283 + 307 = 4094.
		

Crossrefs

Programs

  • Maple
    Contribution from R. J. Mathar, Apr 24 2010: (Start)
    A007645 := proc(n) if n <= 2 then op(n,[3,7]) ; ; else for a from procname(n-1)+2 by 2 do if isprime(a) and (a mod 3) <> 2 then return a ; end if; end do: end if; end proc:
    A172113 := proc(n) add( A007645(i),i=1..n) ; end proc: seq(A172113(n),n=1..80) ; (End)

Formula

a(n) = SUM[i=1..n] A007645(i) = SUM[i=1..n] {primes of the form x^2 + xy + y^2} = SUM[i=1..n] {primes of form x^2 + 3*y^2} = SUM[i=1..n] {primes == 0 or 1 mod 3}.

Extensions

a(5) corrected and more terms appended by R. J. Mathar, Feb 07 2010
Edited by N. J. A. Sloane, Sep 26 2010, Jan 29 2013.

A217035 Generalized cuban primes (A007645) which are also Class 1- (or Pierpont) primes (A005109).

Original entry on oeis.org

3, 7, 13, 19, 37, 73, 97, 109, 163, 193, 433, 487, 577, 769, 1153, 1297, 1459, 2593, 2917, 3457, 3889, 10369, 12289, 17497, 18433, 39367, 52489, 139969, 147457, 209953, 331777, 472393, 629857, 746497, 786433, 839809, 995329, 1179649, 1492993, 1769473
Offset: 1

Views

Author

Jonathan Vos Post, Sep 24 2012

Keywords

Comments

Is this the union of A058383 and {3}? - R. J. Mathar, Sep 28 2012
Yes, it is, because the only Fermat prime == 0 or 1 mod 3 is 3. - Robert Israel, Mar 02 2018
Generalized cuban primes are primes of the form x^2 + xy + y^2; or: primes of form x^2 + 3*y^2; or: primes == 0 or 1 mod 3. Class 1- (or Pierpont) primes: primes of the form 2^t*3^u + 1.

Crossrefs

Programs

  • Mathematica
    nn = 100000; t1 = Join[{3}, Select[Prime[Range[nn]], MemberQ[{1}, Mod[#, 3]] &]]; t2 = Select[Prime[Range[nn]], Max @@ First /@ FactorInteger[# - 1] < 5 &]; Intersection[t1, t2] (* T. D. Noe, Sep 26 2012 *)

Formula

A007645 INTERSECTION A005109.

A144919 Duplicate of A007645.

Original entry on oeis.org

3, 7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 97, 103, 109, 127, 139, 151, 157, 163, 181, 193, 199, 211, 223, 229, 241, 271, 277, 283, 307, 313, 331, 337, 349, 367, 373, 379, 397, 409, 421, 433, 439, 457, 463, 487, 499, 523, 541, 547, 571, 577, 601, 607, 613, 619
Offset: 1

Views

Author

Keywords

A173147 Numbers n such that exactly one of prime(n-1) and prime(n+1) is a generalized cuban prime (A007645).

Original entry on oeis.org

9, 10, 11, 12, 15, 17, 18, 19, 21, 22, 23, 24, 32, 33, 36, 38, 39, 41, 46, 48, 51, 52, 54, 57, 58, 59, 67, 68, 71, 72, 73, 75, 76, 77, 84, 85, 86, 87, 91, 92, 96, 98, 99, 101, 102, 104, 105, 106, 107, 109, 110, 112, 114, 115, 118, 120, 121, 122, 123, 124, 129, 131
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Feb 11 2010

Keywords

Examples

			a(2)=9 because prime(9-1)=19 is a generalized cuban prime and prime(9+1)=29 is not.
		

Crossrefs

Extensions

84 inserted, 88 removed - R. J. Mathar, Mar 01 2010
Further corrections and edits from Charles R Greathouse IV, Mar 25 2010

A106856 Primes of the form x^2 + xy + 2y^2, with x and y nonnegative.

Original entry on oeis.org

2, 11, 23, 37, 43, 53, 71, 79, 107, 109, 127, 137, 149, 151, 163, 193, 197, 211, 233, 239, 263, 281, 317, 331, 337, 373, 389, 401, 421, 431, 443, 463, 487, 491, 499, 541, 547, 557, 569, 599, 613, 617, 641, 653, 659, 673, 683, 739, 743, 751, 757, 809, 821
Offset: 1

Views

Author

T. D. Noe, May 09 2005, Apr 28 2008

Keywords

Comments

Discriminant=-7. Binary quadratic forms ax^2 + bxy + cy^2 have discriminant d = b^2 - 4ac.
Consider sequences of primes produced by forms with -100
The Mathematica function QuadPrimes2 is useful for finding the primes less than "lim" represented by the positive definite quadratic form ax^2 + bxy + cy^2 for any a, b and c satisfying a>0, c>0, and discriminant d<0. It does this by examining all x>=0 and y>=0 in the ellipse ax^2 + bxy + cy^2 <= lim. To find the primes generated by positive and negative x and y, compute the union of QuadPrimes2[a,b,c,lim] and QuadPrimes2[a,-b,c,lim]. - T. D. Noe, Sep 01 2009
For other programs see the "Binary Quadratic Forms and OEIS" link.

References

  • David A. Cox, Primes of the Form x^2 + n y^2, Wiley, 1989.
  • L. E. Dickson, History of the Theory of Numbers, Vol. 3, Chelsea, 1923.

Crossrefs

Discriminants in the range -3 to -100: A007645 (d=-3), A002313 (d=-4), A045373, A106856 (d=-7), A033203 (d=-8), A056874, A106857 (d=-11), A002476 (d=-12), A033212, A106858-A106861 (d=-15), A002144, A002313 (d=-16), A106862-A106863 (d=-19), A033205, A106864-A106865 (d=-20), A106866-A106869 (d=-23), A033199, A084865 (d=-24), A002476, A106870 (d=-27), A033207 (d=-28), A033221, A106871-A106874 (d=-31), A007519, A007520, A106875-A106876 (d=-32), A106877-A106881 (d=-35), A040117, A068228, A106882 (d=-36), A033227, A106883-A106888 (d=-39), A033201, A106889 (d=-40), A106890-A106891 (d=-43), A033209, A106282, A106892-A106893 (d=-44), A033232, A106894-A106900 (d=-47), A068229 (d=-48), A106901-A106904 (d=-51), A033210, A106905-A106906 (d=-52), A033235, A106907-A106913 (d=-55), A033211, A106914-A106917 (d=-56), A106918-A106922 (d=-59), A033212, A106859 (d=-60), A106923-A106930 (d=-63), A007521, A106931 (d=-64), A106932-A106933 (d=-67), A033213, A106934-A106938 (d=-68), A033246, A106939-A106948 (d=-71), A106949-A106950 (d=-72), A033212, A106951-A106952 (d=-75), A033214, A106953-A106955 (d=-76), A033251, A106956-A106962 (d=-79), A047650, A106963-A106965 (d=-80), A106966-A106970 (d=-83), A033215, A102271, A102273, A106971-A106974 (d=-84), A033256, A106975-A106983 (d=-87), A033216, A106984 (d=-88), A106985-A106989 (d=-91), A033217 (d=-92), A033206, A106990-A107001 (d=-95), A107002-A107008 (d=-96), A107009-A107013 (d=-99).
Other collections of quadratic forms: A139643, A139827.
For a more comprehensive list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.
Cf. also A242660.

Programs

  • Mathematica
    QuadPrimes2[a_, b_, c_, lmt_] := Module[{p, d, lst = {}, xMax, yMax}, d = b^2 - 4a*c; If[a > 0 && c > 0 && d < 0, xMax = Sqrt[lmt/a]*(1+Abs[b]/Floor[Sqrt[-d]])]; Do[ If[ 4c*lmt + d*x^2 >= 0, yMax = ((-b)*x + Sqrt[4c*lmt + d*x^2])/(2c), yMax = 0 ]; Do[p = a*x^2 + b*x*y + c*y^2; If[ PrimeQ[ p]  && p <= lmt && !MemberQ[ lst, p], AppendTo[ lst, p]], {y, 0, yMax}], {x, 0, xMax}]; Sort[ lst]];
    QuadPrimes2[1, 1, 2, 1000]
    (This is a corrected version of the old, incorrect, program QuadPrimes. - N. J. A. Sloane, Jun 15 2014)
    max = 1000; Table[yy = {y, 1, Floor[Sqrt[8 max - 7 x^2]/4 - x/4]}; Table[ x^2 + x y + 2 y^2, yy // Evaluate], {x, 0, Floor[Sqrt[max]]}] // Flatten // Union // Select[#, PrimeQ]& (* Jean-François Alcover, Oct 04 2018 *)
  • PARI
    list(lim)=my(q=Qfb(1,1,2), v=List([2])); forprime(p=2, lim, if(vecmin(qfbsolve(q, p))>0, listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Aug 05 2016

Extensions

Removed old Mathematica programs - T. D. Noe, Sep 09 2009
Edited (pointed out error in QuadPrimes, added new version of program, checked and extended b-file). - N. J. A. Sloane, Jun 06 2014
Showing 1-10 of 87 results. Next