A272200 Bisection of primes congruent to 1 modulo 3 (A002476), depending on the corresponding A001479 entry being congruent to 1 modulo 3 or not. Here the first case.
13, 19, 43, 61, 97, 103, 109, 127, 157, 163, 181, 193, 241, 277, 283, 331, 349, 373, 379, 409, 433, 463, 487, 499, 523, 601, 607, 619, 631, 661, 673, 691, 727, 733, 757, 769, 787, 811, 859, 883, 937, 967, 991
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Steven R. Finch, Powers of Euler's q-Series, arXiv:math/0701251 [math.NT], 2007.
Crossrefs
Programs
-
Maple
filter:= proc(n) local S,x,y; if not isprime(n) then return false fi; S:= remove(hastype,[isolve(x^2+3*y^2=n)],negative); subs(S[1],x) mod 3 = 1 end proc: select(filter, [seq(i,i=7..1000,6)]); # Robert Israel, Apr 29 2019
-
Mathematica
filterQ[n_] := Module[{S, x, y}, If[!PrimeQ[n], Return[False]]; S = Solve[x > 0 && y > 0 && x^2 + 3 y^2 == n, Integers]; Mod[x /. S[[1]], 3] == 1]; Select[Range[7, 1000, 6], filterQ] (* Jean-François Alcover, Apr 21 2020, after Robert Israel *)
Comments