A272197 Number of solutions of the congruence y^2 == x^3 + 1 (mod p) as p runs through the primes.
2, 3, 5, 11, 11, 11, 17, 11, 23, 29, 35, 47, 41, 35, 47, 53, 59, 47, 83, 71, 83, 83, 83, 89, 83, 101, 83, 107, 107, 113, 107, 131, 137, 155, 149, 155, 143, 155, 167, 173, 179, 155, 191, 191, 197, 227, 227, 251, 227, 251, 233, 239, 227, 251, 257, 263, 269, 299, 251, 281
Offset: 1
Examples
The first nonnegative complete residue system {0, 1, ..., prime(n)-1} is used. The solutions (x, y) of y^2 == x^3 + 1 (mod prime(n)) begin: n, prime(n), a(n)\ solutions (x, y) 1, 2, 2: (0, 1), (1, 0) 2, 3, 3: (0, 1), (0, 2), (2, 0) 3, 5, 5: (0, 1), (0, 4), (2, 2), (2, 3), (4, 0) 4, 7, 11: (0, 1), (0, 6), (1, 3), (1, 4), (2, 3), (2, 4), (3, 0), (4, 3), (4, 4), (5, 0), (6, 0) 5, 11, 11: (0, 1), (0, 10), (2, 3), (2, 8), (5, 4), (5, 7), (7, 5), (7, 6), (9, 2), (9, 9), (10, 0)
References
- J. H. Silverman, A Friendly Introduction to Number Theory, 3rd ed., Pearson Education, Inc, 2006, Exercise 45.5, p. 405, Exercise 47.2, p. 415. (4th ed., Pearson 2014, Exercise 5, p. 371, Exercise 2, p. 385).
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
- Yves Martin and Ken Ono, Eta-Quotients and Elliptic Curves, Proc. Amer. Math. Soc. 125, No 11 (1997), 3169-3176.
Formula
a(n) gives the number of solutions of the congruence y^2 == x^3 + 1 (mod prime(n)), n >= 1.
Comments