A272198 The p-defect p - N(p) of the congruence y^2 == x^3 + 1 (mod p) for primes p, where N(p) is the number of solutions given by A272197(n).
0, 0, 0, -4, 0, 2, 0, 8, 0, 0, -4, -10, 0, 8, 0, 0, 0, 14, -16, 0, -10, -4, 0, 0, 14, 0, 20, 0, 2, 0, 20, 0, 0, -16, 0, -4, 14, 8, 0, 0, 0, 26, 0, 2, 0, -28, -16, -28, 0, -22, 0, 0, 14, 0, 0, 0, 0, -28, 26, 0
Offset: 1
Examples
a(1) = 2 - A272197(1) = 0, and 2 == 2(mod 3). a(4) = 7 - A272197(4) = 7 - 11 = -4, and 7 = A002476(1) = 2^2 + 3*1^2, 2 = A001479(1+1), 7 = A272201(1), hence a(4) = -2*2 = -4. a(6) = 13 - A272197(6) = 13 - 11 = 2, and 13 = A002476(2) = 1^2 + 3*2^2; 1 = A001479(2+1), 13 = A272200(1), hence a(6) = +2*1 = +2.
References
- J. H. Silverman, A Friendly Introduction to Number Theory, 3rd ed., Pearson Education, Inc, 2006, Exercise 45.5, p. 405, Exercise 47.2, p. 415, and pp. 400 - 402 (4th ed., Pearson 2014, Exercise 5, p. 371, Exercise 2, p. 385, and pp. 366 - 368).
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
- Y. Martin, Multiplicative eta-quotients, Trans. Amer. Math. Soc. 348 (1996), no. 12, 4825-4856, see page 4852 Table I.
- Yves Martin and Ken Ono, Eta-Quotients and Elliptic Curves, Proc. Amer. Math. Soc. 125, No 11 (1997), 3169-3176.
Formula
a(n) = prime(n) - N(prime(n)), n = 1, where N(prime(n)) = A272197(n), the number of solutions of the congruence y^2 == x^3 + 1 (mod prime(n)).
a(n) = 0 for prime(n) == 0, 2 (mod 3) (see A045309).
The above given conjecture for primes 1 (mod 3) is true because Mordell proved the Ramanujan conjecture on the expansion coefficients of eta^4(6*z), and with the present a(n) the result of Ramanujan follows. See the references and a comment on A000727.
See a comment above for the bisection of the primes 1 (mod 3) into type I and II.
Comments