cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 275 results. Next

A088977 Side of primitive equilateral triangle with prime cevian p=A002476(n) cutting an edge into two integral parts.

Original entry on oeis.org

8, 15, 21, 35, 40, 48, 65, 77, 80, 91, 112, 117, 119, 133, 160, 168, 171, 187, 207, 209, 221, 224, 253, 255, 264, 280, 312, 323, 325, 341, 352, 377, 391, 403, 408, 425, 435, 440, 455, 465, 483, 504, 525, 527, 560, 576, 595, 609, 624, 645, 651, 665, 667, 703
Offset: 1

Views

Author

Lekraj Beedassy, Oct 31 2003

Keywords

Comments

The edge a(n) is partitioned into q=s^2 - t^2=A088243(n)*A088296(n) and r=t(2s+t)=A088242(n)*A088299(n) by a cevian of length p. [Alternatively, (p,q,r) form a triangle with angle 2pi/3 opposite side p.] The quadruple {p,q,r,a(n)=q+r} satisfies the triangle relation: see A061281, or the simpler relation a(n)^2 = p^2 + q*r.

Crossrefs

Programs

  • Mathematica
    sol[p_] := Solve[0 < t < s && s^2 + s t + t^2 == p, {s, t}, Integers];
    Union[Reap[For[n = 1, n <= 10000, n++, If[PrimeQ[p = 6n + 1], an = s(s + 2t) /. sol[p][[1]]]; Sow[an]]][[2, 1]]] (* Jean-François Alcover, Mar 06 2020 *)

Formula

a(n) = A088241(n)*A088298(n) = s(s+2t), where s^2 + st + t^2, with s>t, form the primes p = 1 (mod 6) = A002476(n).

Extensions

More terms from Ray Chandler, Nov 01 2003

A088241 Values of y, where x^2 + xy + y^2 = p (xA002476).

Original entry on oeis.org

2, 3, 3, 5, 4, 6, 5, 7, 8, 7, 8, 9, 7, 7, 10, 9, 12, 11, 11, 9, 13, 14, 11, 12, 15, 10, 12, 13, 17, 16, 11, 13, 17, 13, 17, 15, 12, 15, 20, 13, 18, 17, 21, 21, 18, 17, 21, 14, 21, 19, 24, 23, 19, 22, 15, 18, 20, 21, 19, 25, 18, 19, 23, 21, 27, 17, 27, 25, 19, 20, 27, 23, 28, 21, 26
Offset: 1

Views

Author

Lekraj Beedassy, Nov 03 2003

Keywords

Crossrefs

Programs

  • Maple
    R:= NULL: count:= 0:
    for k from 1 while count < 100 do
      p:= 6*k+1;
      if not isprime(p) then next fi;
      S:= select(t -> subs(t,x) > 0 and subs(t,x) < subs(t,y), [isolve(x^2+x*y+y^2=p)]);
      S:= map(t -> subs(t,y), S);
      R:= R,op(S); count:= count+1;
    od:
    R; #Robert Israel, Jun 16 2025
  • Mathematica
    Reap[For[n = 1, n <= 200, n++, If[PrimeQ[p = 6 n + 1], s = Solve[x^2 + x y + y^2 == p && 0 < x < y, {x, y}, Integers]; Sow[y /. s[[1]]]]]][[2, 1]] (* Jean-François Alcover, Mar 07 2020 *)

Extensions

More terms from Ray Chandler, Nov 04 2003

A088242 Values of x, where x^2 + xy + y^2 = p (xA002476).

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 4, 2, 1, 3, 3, 2, 5, 6, 3, 5, 1, 3, 4, 7, 2, 1, 6, 5, 1, 9, 7, 6, 1, 3, 10, 8, 3, 9, 4, 7, 11, 8, 1, 11, 5, 7, 1, 2, 7, 9, 4, 13, 5, 8, 1, 3, 9, 5, 14, 11, 9, 8, 11, 3, 13, 12, 7, 10, 1, 15, 2, 6, 14, 13, 4, 10, 3, 13, 7, 17, 3, 7, 9, 13, 8, 11, 16, 15, 6, 3, 12, 17, 7, 9, 1, 3, 16
Offset: 1

Views

Author

Lekraj Beedassy, Nov 03 2003

Keywords

Crossrefs

Programs

  • Maple
    R:= NULL: count:= 0:
    for k from 1 while count < 100 do
      p:= 6*k+1;
      if not isprime(p) then next fi;
      S:= select(t -> subs(t,x) > 0 and subs(t,x) < subs(t,y), [isolve(x^2+x*y+y^2=p)]);
      S:= map(t -> subs(t,x), S);
       R:= R,op(S); count:= count+1;
    od:
    R; # Robert Israel, Jun 16 2025
  • Mathematica
    Reap[For[n = 1, n <= 200, n++, If[PrimeQ[p = 6 n + 1], s = Solve[x^2 + x y + y^2 == p && 0 < x < y, {x, y}, Integers]; Sow[x /. s[[1]]]]]][[2, 1]] (* Jean-François Alcover, Mar 07 2020 *)

Extensions

More terms from Ray Chandler, Nov 04 2003

A088243 Values of x + y, where x^2 + xy + y^2=p (xA002476).

Original entry on oeis.org

3, 4, 5, 6, 7, 7, 9, 9, 9, 10, 11, 11, 12, 13, 13, 14, 13, 14, 15, 16, 15, 15, 17, 17, 16, 19, 19, 19, 18, 19, 21, 21, 20, 22, 21, 22, 23, 23, 21, 24, 23, 24, 22, 23, 25, 26, 25, 27, 26, 27, 25, 26, 28, 27, 29, 29, 29, 29, 30, 28, 31, 31, 30, 31, 28, 32, 29, 31, 33, 33, 31, 33
Offset: 1

Views

Author

Lekraj Beedassy, Nov 03 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Reap[For[n = 1, n <= 200, n++, If[PrimeQ[p = 6 n + 1], s = Solve[x^2 + x y + y^2 == p && 0 < x < y, {x, y}, Integers]; Sow[x + y /. s[[1]]]]]][[2, 1]] (* Jean-François Alcover, Mar 07 2020 *)

Extensions

More terms from Ray Chandler, Nov 04 2003

A088296 Values of y - x, where x^2 + xy + y^2=p (xA002476).

Original entry on oeis.org

1, 2, 1, 4, 1, 5, 1, 5, 7, 4, 5, 7, 2, 1, 7, 4, 11, 8, 7, 2, 11, 13, 5, 7, 14, 1, 5, 7, 16, 13, 1, 5, 14, 4, 13, 8, 1, 7, 19, 2, 13, 10, 20, 19, 11, 8, 17, 1, 16, 11, 23, 20, 10, 17, 1, 7, 11, 13, 8, 22, 5, 7, 16, 11, 26, 2, 25, 19, 5, 7, 23, 13, 25, 8, 19, 1, 26, 20, 17, 10, 19, 14, 5, 7, 23
Offset: 1

Views

Author

Lekraj Beedassy, Nov 03 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Reap[For[n = 1, n <= 200, n++, If[PrimeQ[p = 6 n + 1], s = Solve[x^2 + x y + y^2 == p && 0 < x < y, {x, y}, Integers];
    Sow[y - x /. s[[1]]]]]][[2, 1]] (* Jean-François Alcover, Mar 09 2020 *)

Extensions

More terms from Ray Chandler, Nov 04 2003

A088298 Values of 2x + y, where x^2 + xy + y^2=p (xA002476).

Original entry on oeis.org

4, 5, 7, 7, 10, 8, 13, 11, 10, 13, 14, 13, 17, 19, 16, 19, 14, 17, 19, 23, 17, 16, 23, 22, 17, 28, 26, 25, 19, 22, 31, 29, 23, 31, 25, 29, 34, 31, 22, 35, 28, 31, 23, 25, 32, 35, 29, 40, 31, 35, 26, 29, 37, 32, 43, 40, 38, 37, 41, 31, 44, 43, 37, 41, 29, 47, 31, 37, 47, 46, 35
Offset: 1

Views

Author

Lekraj Beedassy, Nov 03 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Reap[For[n = 1, n <= 200, n++, If[PrimeQ[p = 6 n + 1], s = Solve[x^2 + x y + y^2 == p && 0 < x < y, {x, y}, Integers];
    Sow[2x + y /. s[[1]]]]]][[2, 1]] (* Jean-François Alcover, Mar 09 2020 *)

Extensions

More terms from Ray Chandler, Nov 04 2003

A088299 Values of x + 2y, where x^2 + xy + y^2=p (xA002476).

Original entry on oeis.org

5, 7, 8, 11, 11, 13, 14, 16, 17, 17, 19, 20, 19, 20, 23, 23, 25, 25, 26, 25, 28, 29, 28, 29, 31, 29, 31, 32, 35, 35, 32, 34, 37, 35, 38, 37, 35, 38, 41, 37, 41, 41, 43, 44, 43, 43, 46, 41, 47, 46, 49, 49, 47, 49, 44, 47, 49, 50, 49, 53, 49, 50, 53, 52, 55, 49, 56, 56, 52, 53
Offset: 1

Views

Author

Lekraj Beedassy, Nov 03 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Reap[For[n = 1, n <= 200, n++, If[PrimeQ[p = 6 n + 1], s = Solve[x^2 + x y + y^2 == p && 0 < x < y, {x, y}, Integers];
    Sow[x + 2y /. s[[1]]]]]][[2, 1]] (* Jean-François Alcover, Mar 09 2020 *)

Extensions

More terms from Ray Chandler, Nov 04 2003

A108164 Semiprimes p*q where both p and q are primes of the form 6n+1 (A002476).

Original entry on oeis.org

49, 91, 133, 169, 217, 247, 259, 301, 361, 403, 427, 469, 481, 511, 553, 559, 589, 679, 703, 721, 763, 793, 817, 871, 889, 949, 961, 973, 1027, 1057, 1099, 1141, 1147, 1159, 1261, 1267, 1273, 1333, 1339, 1351, 1369, 1387, 1393, 1417, 1477, 1501, 1561, 1591
Offset: 1

Views

Author

Jonathan Vos Post, Jun 13 2005

Keywords

Comments

These are the products of terms from A107890 excluding multiples of 3.
Every semiprime not divisible by 2 or 3 must be in one of these three disjoint sets:
A108164 = the product of two primes of the form 6n+1 (A002476),
A108166 = the product of two primes of the form 6n-1 (A007528),
A108172 = the product of a prime of the form 6n+1 and a prime of the form 6n-1.
The product of two primes of the form 6n+1 is a semiprime of the form 6n+1.

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.

Crossrefs

Programs

  • Maple
    N:= 2000: # To get all terms <= N
    P:= select(isprime, [seq(i,i=7..N/7, 6)]):
    sort(select(`<=`,[seq(seq(P[i]*P[j],j=1..i),i=1..nops(P))],N)); # Robert Israel, Dec 27 2018
  • Mathematica
    With[{nn=50},Take[Times@@@Tuples[Select[6*Range[nn]+1,PrimeQ],2]// Union,nn]] (* Harvey P. Dale, May 20 2021 *)

Formula

{a(n)} = {p*q where both p and q are in A002476}.

Extensions

Edited and extended by Ray Chandler, Oct 15 2005

A334477 Decimal expansion of Product_{k>=1} (1 + 1/A002476(k)^3).

Original entry on oeis.org

1, 0, 0, 3, 6, 0, 2, 5, 4, 0, 2, 2, 1, 2, 5, 9, 8, 9, 6, 7, 0, 4, 3, 2, 3, 9, 3, 3, 3, 3, 2, 1, 8, 7, 8, 5, 9, 1, 7, 0, 5, 3, 9, 4, 7, 7, 1, 1, 7, 5, 0, 8, 7, 2, 1, 3, 7, 0, 2, 2, 4, 0, 2, 6, 4, 1, 6, 5, 2, 3, 7, 1, 7, 3, 7, 1, 7, 3, 6, 2, 6, 1, 4, 6, 6, 2, 7, 5, 2, 0, 4, 0, 8, 1, 5, 1, 4, 8, 2, 9, 8, 9, 1, 5, 7
Offset: 1

Views

Author

Vaclav Kotesovec, May 02 2020

Keywords

Comments

In general, for s > 0, Product_{k>=1} (1 + 1/A002476(k)^(2*s+1)) / (1 - 1/A002476(k)^(2*s+1)) = sqrt(3) * (2*Pi)^(2*s + 1) * zeta(2*s + 1) * A002114(s) / ((2^(2*s + 1) + 1) * (3^(2*s + 1) + 1) * (2*s)! * zeta(4*s + 2)).
For s > 1, Product_{k>=1} (1 + 1/A002476(k)^s) / (1 - 1/A002476(k)^s) = (zeta(s, 1/6) - zeta(s, 5/6))*zeta(s) / ((2^s + 1)*(3^s + 1)*zeta(2*s)).
For s > 1, Product_{k>=1} (1 + 1/A002476(k)^s) * (1 + 1/A007528(k)^s) = 6^s * zeta(s) / ((2^s + 1) * (3^s + 1) * zeta(2*s)).
For s > 0, Product_{k>=1} ((A007528(k)^(2*s+1) - 1) / (A007528(k)^(2*s+1) + 1)) * ((A002476(k)^(2*s+1) + 1) / (A002476(k)^(2*s+1) - 1)) = 6 * A002114(s)^2 * (4*s + 2)! / ((2^(4*s + 2) - 1) * (3^(4*s + 2) - 1) * Bernoulli(4*s + 2) * (2*s)!^2) = Bernoulli(2*s)^2 * (4*s + 2)! * (zeta(2*s + 1, 1/6) - zeta(2*s + 1, 5/6))^2 / (8*Pi^2 * (2^(4*s + 2) - 1) * (3^(4*s + 2) - 1) * Bernoulli(4*s + 2) * (2*s)!^2 * zeta(2*s)^2).

Examples

			1.0036025402212598967043239333321878591705394771...
		

Crossrefs

Formula

A334477 / A334478 = 15*sqrt(3)*zeta(3)/Pi^3.
A334477 * A334479 = 810*zeta(3)/Pi^6.

Extensions

More digits from Vaclav Kotesovec, Jun 27 2020

A334478 Decimal expansion of Product_{k>=1} (1 - 1/A002476(k)^3).

Original entry on oeis.org

9, 9, 6, 4, 0, 1, 6, 9, 2, 8, 1, 6, 0, 3, 6, 6, 3, 2, 2, 6, 2, 3, 6, 1, 1, 2, 2, 3, 8, 4, 7, 1, 8, 7, 9, 9, 9, 6, 5, 5, 7, 3, 8, 1, 8, 7, 1, 4, 0, 5, 3, 1, 5, 3, 7, 8, 6, 9, 8, 8, 9, 7, 4, 9, 3, 0, 1, 5, 9, 1, 3, 3, 2, 5, 3, 4, 3, 0, 6, 8, 4, 2, 5, 6, 2, 1, 9, 1, 9, 7, 2, 9, 9, 7, 7, 5, 2, 3, 2, 2, 1, 2, 3, 0, 1, 9
Offset: 0

Views

Author

Vaclav Kotesovec, May 02 2020

Keywords

Comments

In general, for s > 0, Product_{k>=1} (1 + 1/A002476(k)^(2*s+1)) / (1 - 1/A002476(k)^(2*s+1)) = sqrt(3) * (2*Pi)^(2*s + 1) * zeta(2*s + 1) * A002114(s) / ((2^(2*s + 1) + 1) * (3^(2*s + 1) + 1) * (2*s)! * zeta(4*s + 2)).
For s > 1, Product_{k>=1} (1 + 1/A002476(k)^s) / (1 - 1/A002476(k)^s) = (zeta(s, 1/6) - zeta(s, 5/6))*zeta(s) / ((2^s + 1)*(3^s + 1)*zeta(2*s)).
For s > 1, Product_{k>=1} (1 - 1/A002476(k)^s) * (1 - 1/A007528(k)^s) = 6^s / ((2^s - 1)*(3^s - 1)*zeta(s)).

Examples

			0.996401692816036632262361122384718799965573818714...
		

Crossrefs

Formula

A334477 / A334478 = 15*sqrt(3)*zeta(3)/Pi^3.
A334478 * A334480 = 108/(91*zeta(3)).

Extensions

More digits from Vaclav Kotesovec, Jun 27 2020
Showing 1-10 of 275 results. Next