cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A002476 Primes of the form 6m + 1.

Original entry on oeis.org

7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 97, 103, 109, 127, 139, 151, 157, 163, 181, 193, 199, 211, 223, 229, 241, 271, 277, 283, 307, 313, 331, 337, 349, 367, 373, 379, 397, 409, 421, 433, 439, 457, 463, 487, 499, 523, 541, 547, 571, 577, 601, 607, 613, 619
Offset: 1

Views

Author

Keywords

Comments

Equivalently, primes of the form 3m + 1.
Rational primes that decompose in the field Q(sqrt(-3)). - N. J. A. Sloane, Dec 25 2017
Primes p dividing Sum_{k=0..p} binomial(2k, k) - 3 = A006134(p) - 3. - Benoit Cloitre, Feb 08 2003
Primes p such that tau(p) == 2 (mod 3) where tau(x) is the Ramanujan tau function (cf. A000594). - Benoit Cloitre, May 04 2003
Primes of the form x^2 + xy - 2y^2 = (x+2y)(x-y). - N. J. A. Sloane, May 31 2014
Primes of the form x^2 - xy + 7y^2 with x and y nonnegative. - T. D. Noe, May 07 2005
Primes p such that p^2 divides Sum_{m=1..2(p-1)} Sum_{k=1..m} (2k)!/(k!)^2. - Alexander Adamchuk, Jul 04 2006
A006512 larger than 5 (Greater of twin primes) is a subsequence of this. - Jonathan Vos Post, Sep 03 2006
A039701(A049084(a(n))) = A134323(A049084(a(n))) = 1. - Reinhard Zumkeller, Oct 21 2007
Also primes p such that the arithmetic mean of divisors of p^2 is an integer: sigma_1(p^2)/sigma_0(p^2) = C. (A000203(p^2)/A000005(p^2) = C). - Ctibor O. Zizka, Sep 15 2008
Fermat knew that these numbers can also be expressed as x^2 + 3y^2 and are therefore not prime in Z[omega], where omega is a complex cubic root of unity. - Alonso del Arte, Dec 07 2012
Primes of the form x^2 + xy + y^2 with x < y and nonnegative. Also see A007645 which also applies when x=y, adding an initial 3. - Richard R. Forberg, Apr 11 2016
For any term p in this sequence, let k = (p^2 - 1)/6; then A016921(k) = p^2. - Sergey Pavlov, Dec 16 2016; corrected Dec 18 2016
For the decomposition p=x^2+3*y^2, x(n) = A001479(n+1) and y(n) = A001480(n+1). - R. J. Mathar, Apr 16 2024

Examples

			Since 6 * 1 + 1 = 7 and 7 is prime, 7 is in the sequence. (Also 7 = 2^2 + 3 * 1^2 = (2 + sqrt(-3))(2 - sqrt(-3)).)
Since 6 * 2 + 1 = 13 and 13 is prime, 13 is in the sequence.
17 is prime but it is of the form 6m - 1 rather than 6m + 1, and is therefore not in the sequence.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
  • David A. Cox, Primes of the Form x^2 + ny^2. New York: Wiley (1989): 8.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 261.

Crossrefs

For values of m see A024899. Primes of form 3n - 1 give A003627.
These are the primes arising in A024892, A024899, A034936.
A091178 gives prime index.
Subsequence of A016921 and of A050931.
Cf. A004611 (multiplicative closure).

Programs

  • GAP
    Filtered(List([0..110],k->6*k+1),n-> IsPrime(n)); # Muniru A Asiru, Mar 11 2019
  • Haskell
    a002476 n = a002476_list !! (n-1)
    a002476_list = filter ((== 1) . (`mod` 6)) a000040_list
    -- Reinhard Zumkeller, Jan 15 2013
    
  • J
    (#~ 1&p:) >: 6 * i.1000 NB. Stephen Makdisi, May 01 2018
    
  • Magma
    [n: n in [1..700 by 6] | IsPrime(n)]; // Vincenzo Librandi, Apr 05 2011
    
  • Maple
    a := [ ]: for n from 1 to 400 do if isprime(6*n+1) then a := [ op(a), n ]; fi; od: A002476 := n->a[n];
  • Mathematica
    Select[6*Range[100] + 1, PrimeQ[ # ] &] (* Stefan Steinerberger, Apr 06 2006 *)
  • PARI
    select(p->p%3==1,primes(100)) \\ Charles R Greathouse IV, Oct 31 2012
    

Formula

From R. J. Mathar, Apr 03 2011: (Start)
Sum_{n >= 1} 1/a(n)^2 = A175644.
Sum_{n >= 1} 1/a(n)^3 = A175645. (End)
a(n) = 6*A024899(n) + 1. - Zak Seidov, Aug 31 2016
From Vaclav Kotesovec, May 02 2020: (Start)
Product_{k>=1} (1 - 1/a(k)^2) = 1/A175646.
Product_{k>=1} (1 + 1/a(k)^2) = A334481.
Product_{k>=1} (1 - 1/a(k)^3) = A334478.
Product_{k>=1} (1 + 1/a(k)^3) = A334477. (End)
Legendre symbol (-3, a(n)) = +1 and (-3, A007528(n)) = -1, for n >= 1. For prime 3 one sets (-3, 3) = 0. - Wolfdieter Lang, Mar 03 2021

A175646 Decimal expansion of the Product_{primes p == 1 (mod 3)} 1/(1 - 1/p^2).

Original entry on oeis.org

1, 0, 3, 4, 0, 1, 4, 8, 7, 5, 4, 1, 4, 3, 4, 1, 8, 8, 0, 5, 3, 9, 0, 3, 0, 6, 4, 4, 4, 1, 3, 0, 4, 7, 6, 2, 8, 5, 7, 8, 9, 6, 5, 4, 2, 8, 4, 8, 9, 0, 9, 9, 8, 8, 6, 4, 1, 6, 8, 2, 5, 0, 3, 8, 4, 2, 1, 2, 2, 2, 2, 4, 5, 8, 7, 1, 0, 9, 6, 3, 5, 8, 0, 4, 9, 6, 2, 1, 7, 0, 7, 9, 8, 2, 6, 2, 0, 5, 9, 6, 2, 8, 9, 9, 7
Offset: 1

Views

Author

R. J. Mathar, Aug 01 2010

Keywords

Comments

The Euler product of the Riemann zeta function at 2 restricted to primes in A002476, which is the inverse of the infinite product (1-1/7^2)*(1-1/13^2)*(1-1/19^2)*...
There is a complementary Product_{primes p == 2 (mod 3)} 1/(1-1/p^2) = A333240 = 1.4140643908921476375655018190798... such that (this constant here)*1.4140643.../(1-1/3^2) = zeta(2) = A013661.
Because 1/(1-p^(-2)) = 1+1/(p^2-1), the complementary 1.414064... also equals Product_{primes p == 2 (mod 3)} (1+1/(p^2-1)), which appears in Eq. (1.8) of [Dence and Pomerance]. - R. J. Mathar, Jan 31 2013

Examples

			1.03401487541434188053903064441304762857896...
		

Crossrefs

Programs

  • Maple
    z := n -> Zeta(n)/Im(polylog(n, (-1)^(2/3))):
    x := n -> (z(2^n)*(3^(2^n)-1)*sqrt(3)/2)^(1/2^n) / 3:
    evalf(4*Pi^2 / (27*mul(x(n), n=1..8)), 106); # Peter Luschny, Jan 17 2021
  • Mathematica
    digits = 105;
    precision = digits + 5;
    prodeuler[p_, a_, b_, expr_] := Product[If[a <= p <= b, expr, 1], {p, Prime[Range[PrimePi[a], PrimePi[b]]]}];
    Lv3[s_] := prodeuler[p, 1, 2^(precision/s), 1/(1 - KroneckerSymbol[-3, p]*p^-s)] // N[#, precision]&;
    Lv4[s_] := 2*Im[PolyLog[s, Exp[2*I*Pi/3]]]/Sqrt[3];
    Lv[s_] := If[s >= 10000, Lv3[s], Lv4[s]];
    gv[s_] := (1 - 3^(-s))*Zeta[s]/Lv[s];
    pB = (3/4)*Product[gv[2^n*2]^(2^-(n+1)), {n, 0, 11}] // N[#, precision]&;
    pA = Pi^2/9/pB ;
    RealDigits[pA, 10, digits][[1]]
    (* Jean-François Alcover, Jan 11 2021, after PARI code due to Artur Jasinski *)
    S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
    P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
    Z[m_, n_, s_] := (w = 1; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = P[m, n, s*w]/w; sumz = sumz + difz; w++]; Exp[sumz]);
    $MaxExtraPrecision = 1000; digits = 121; RealDigits[Chop[N[Z[3,1,2], digits]], 10, digits-1][[1]] (* Vaclav Kotesovec, Jan 15 2021 *)
    z[n_] := Zeta[n] / Im[PolyLog[n, (-1)^(2/3)]];
    x[n_] := (z[2^n] (3^(2^n) - 1) Sqrt[3]/2)^(1/2^n) / 3;
    N[4 Pi^2 / (27 Product[x[n], {n, 8}]), 106] (* Peter Luschny, Jan 17 2021 *)

Formula

Equals 2*Pi^2 / (3^(7/2) * A301429^2). - Vaclav Kotesovec, May 12 2020
Equals Sum_{k>=1} 1/A004611(k)^2. - Amiram Eldar, Sep 27 2020

Extensions

More digits from Vaclav Kotesovec, May 12 2020 and Jun 27 2020

A334477 Decimal expansion of Product_{k>=1} (1 + 1/A002476(k)^3).

Original entry on oeis.org

1, 0, 0, 3, 6, 0, 2, 5, 4, 0, 2, 2, 1, 2, 5, 9, 8, 9, 6, 7, 0, 4, 3, 2, 3, 9, 3, 3, 3, 3, 2, 1, 8, 7, 8, 5, 9, 1, 7, 0, 5, 3, 9, 4, 7, 7, 1, 1, 7, 5, 0, 8, 7, 2, 1, 3, 7, 0, 2, 2, 4, 0, 2, 6, 4, 1, 6, 5, 2, 3, 7, 1, 7, 3, 7, 1, 7, 3, 6, 2, 6, 1, 4, 6, 6, 2, 7, 5, 2, 0, 4, 0, 8, 1, 5, 1, 4, 8, 2, 9, 8, 9, 1, 5, 7
Offset: 1

Views

Author

Vaclav Kotesovec, May 02 2020

Keywords

Comments

In general, for s > 0, Product_{k>=1} (1 + 1/A002476(k)^(2*s+1)) / (1 - 1/A002476(k)^(2*s+1)) = sqrt(3) * (2*Pi)^(2*s + 1) * zeta(2*s + 1) * A002114(s) / ((2^(2*s + 1) + 1) * (3^(2*s + 1) + 1) * (2*s)! * zeta(4*s + 2)).
For s > 1, Product_{k>=1} (1 + 1/A002476(k)^s) / (1 - 1/A002476(k)^s) = (zeta(s, 1/6) - zeta(s, 5/6))*zeta(s) / ((2^s + 1)*(3^s + 1)*zeta(2*s)).
For s > 1, Product_{k>=1} (1 + 1/A002476(k)^s) * (1 + 1/A007528(k)^s) = 6^s * zeta(s) / ((2^s + 1) * (3^s + 1) * zeta(2*s)).
For s > 0, Product_{k>=1} ((A007528(k)^(2*s+1) - 1) / (A007528(k)^(2*s+1) + 1)) * ((A002476(k)^(2*s+1) + 1) / (A002476(k)^(2*s+1) - 1)) = 6 * A002114(s)^2 * (4*s + 2)! / ((2^(4*s + 2) - 1) * (3^(4*s + 2) - 1) * Bernoulli(4*s + 2) * (2*s)!^2) = Bernoulli(2*s)^2 * (4*s + 2)! * (zeta(2*s + 1, 1/6) - zeta(2*s + 1, 5/6))^2 / (8*Pi^2 * (2^(4*s + 2) - 1) * (3^(4*s + 2) - 1) * Bernoulli(4*s + 2) * (2*s)!^2 * zeta(2*s)^2).

Examples

			1.0036025402212598967043239333321878591705394771...
		

Crossrefs

Formula

A334477 / A334478 = 15*sqrt(3)*zeta(3)/Pi^3.
A334477 * A334479 = 810*zeta(3)/Pi^6.

Extensions

More digits from Vaclav Kotesovec, Jun 27 2020

A334480 Decimal expansion of Product_{k>=1} (1 - 1/A007528(k)^3).

Original entry on oeis.org

9, 9, 0, 8, 8, 4, 1, 4, 5, 5, 2, 5, 2, 1, 3, 3, 5, 6, 5, 6, 3, 4, 0, 3, 1, 7, 3, 5, 5, 9, 4, 3, 2, 7, 5, 1, 6, 4, 3, 4, 8, 3, 1, 2, 1, 7, 5, 0, 0, 7, 6, 1, 3, 3, 0, 4, 8, 6, 7, 7, 4, 7, 8, 4, 9, 4, 3, 1, 7, 8, 8, 8, 2, 5, 7, 6, 7, 4, 3, 1, 7, 7, 5, 2, 7, 6, 3, 4, 5, 2, 1, 7, 8, 9, 8, 8, 9, 2, 9, 2, 1, 3, 5, 4, 6, 7
Offset: 0

Views

Author

Vaclav Kotesovec, May 02 2020

Keywords

Comments

In general, for s > 0, Product_{k>=1} (1 + 1/A007528(k)^(2*s+1)) / (1 - 1/A007528(k)^(2*s+1)) = (1 - 1/2^(2*s + 1)) * (3^(2*s + 1) - 1) * (2*s)! * zeta(2*s + 1) / (sqrt(3) * A002114(s) * Pi^(2*s + 1)).
For s > 1, Product_{k>=1} (1 + 1/A007528(k)^s) / (1 - 1/A007528(k)^s) = (2^s - 1) * (3^s - 1) * zeta(s) / (zeta(s, 1/6) - zeta(s, 5/6)).
For s > 1, Product_{k>=1} (1 - 1/A002476(k)^s) * (1 - 1/A007528(k)^s) = 6^s / ((2^s - 1)*(3^s - 1)*zeta(s)).

Examples

			0.990884145525213356563403173559432751643483121750... = 1/1.0091997177631243951237...
		

Crossrefs

Formula

A334479 / A334480 = 91*sqrt(3)*zeta(3)/(6*Pi^3).
A334478 * A334480 = 108/(91*zeta(3)).

Extensions

More digits from Vaclav Kotesovec, Jun 27 2020

A288143 Expansion of x * phi(x) * phi(x^3)^2 * f(x, x^5)^3 in powers of x where phi() is a Ramanujan theta function and f(, ) is Ramanujan's general theta function.

Original entry on oeis.org

1, 5, 9, 11, 24, 45, 50, 53, 81, 120, 120, 99, 170, 250, 216, 203, 288, 405, 362, 264, 450, 600, 528, 477, 601, 850, 729, 550, 840, 1080, 962, 821, 1080, 1440, 1200, 891, 1370, 1810, 1530, 1272, 1680, 2250, 1850, 1320, 1944, 2640, 2208, 1827, 2451, 3005, 2592
Offset: 1

Views

Author

Michael Somos, Jul 01 2017

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = q + 5*q^2 + 9*q^3 + 11*q^4 + 24*q^5 + 45*q^6 + 50*q^7 + 53*q^8 + 81*q^9 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(12), 3), 52); A[2] + 5*A[3] + 9*A[4] + 11*A[5] + 24*A[6] + 45*A[7] + 50*A[8] + 53*A[9] + 81*A[10] + 120*A[11] + 120*A[12] + 99*A[13];
  • Mathematica
    a[ n_] := If[ n < 1, 0, (-1)^n DivisorSum[ n, (-1)^# #^2 JacobiSymbol[ -3, n/#] &]];
    a[ n_] := SeriesCoefficient[ x EllipticTheta[ 3, 0, x] EllipticTheta[ 3, 0, x^3]^2 (QPochhammer[ -x, x^6] QPochhammer[ -x^5, x^6] QPochhammer[ x^6])^3, {x, 0, n}];
    a[ n_] := If[ n < 2, Boole[n == 1], Times @@ (Which[# == 3, 9^#2, # == 2, (4^(#2 + 1) + 9 (-1)^(#2 + 1))/5, Mod[#, 6] == 1, ((#^2)^(#2 + 1) - 1)/(#^2 - 1), True, ((#^2)^(#2 + 1) - (-1)^(#2 + 1))/(#^2 + 1)] & @@@ FactorInteger@n)];
  • PARI
    {a(n) = if( n<1, 0, (-1)^n * sumdiv( n, d, (-1)^d * d^2 * kronecker( -3, n/d)))};
    
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A)^11 * eta(x^6 + A)^7 / (eta(x + A)^5 * eta(x^3 + A) * eta(x^4 + A)^5 * eta(x^12 + A)), n))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==3, 9^e, p==2, (4^(e+1) + 9*(-1)^(e+1)) / 5, p%6==1, ((p^2)^(e+1) - 1) / (p^2 - 1), ((p^2)^(e+1) - (-1)^(e+1)) / (p^2 + 1))))};
    

Formula

Expansion of (a(q^2) - a(-q)) * (2*a(q) + a(-q))^2 / 54 in powers of q where a() is a cubic AGM theta function.
Expansion of -c(-q) * (2*c(q) + c(-q))^2 / 27 in powers of q where c() is a cubic AGM theta function.
Expansion of eta(q^2)^11 * eta(q^6)^7 / (eta(q)^5 * eta(q^3) * eta(q^4)^5 * eta(q^12)) in powers of q.
a(n) is multiplicative with a(3^e) = 9^e, a(2^e) = (4^(e+1) + 9*(-1)^(e+1)) / 5 if e>0, a(p^e) = ((p^2)^(e+1) - 1) / (p^2 - 1) if p == 1 (mod 6), a(p^e) = ((p^2)^(e+1) - (-1)^(e+1)) / (p^2 + 1) if p == 5 (mod 6).
Euler transform of period 12 sequence [5, -6, 6, -1, 5, -12, 5, -1, 6, -6, 5, -6, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 192^(1/2) (t/i)^3 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A113261.
G.f.: Sum_{k>0} k^2 * x^k / (1 + x^k + x^(2*k)) * if(mod(k,4)=2, 3/2, 1).
a(n) = -(-1)^n * A214262(n).
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = Product_{p prime == 1 (mod 6)} (p^3/(p^3-1)) * Product_{p prime == 5 (mod 6)} (p^3/(p^3+1)) = 1/(A334478 * A334479) = 0.99452678821883983883... . - Amiram Eldar, Feb 20 2024
Showing 1-5 of 5 results.