A000441 a(n) = Sum_{k=1..n-1} k*sigma(k)*sigma(n-k).
0, 1, 9, 34, 95, 210, 406, 740, 1161, 1920, 2695, 4116, 5369, 7868, 9690, 13640, 16116, 22419, 25365, 34160, 38640, 50622, 55154, 73320, 77225, 100100, 107730, 135576, 141085, 182340, 184760, 233616, 243408, 297738, 301420, 385110, 377511, 467210, 478842
Offset: 1
Keywords
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Jacques Touchard, On prime numbers and perfect numbers, Scripta Math., 129 (1953), 35-39.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..1000
- Jacques Touchard, On prime numbers and perfect numbers, Scripta Math., 129 (1953), 35-39. [Annotated scanned copy]
Crossrefs
Programs
-
Maple
S:=(n,e)->add(k^e*sigma(k)*sigma(n-k),k=1..n-1); f:=e->[seq(S(n,e),n=1..30)];f(1); # N. J. A. Sloane, Jul 03 2015
-
Mathematica
a[n_] := Sum[k*DivisorSigma[1, k]*DivisorSigma[1, n-k], {k, 1, n-1}]; Array[a, 40] (* Jean-François Alcover, Feb 08 2016 *)
-
PARI
a(n) = sum(k=1, n-1, k*sigma(k)*sigma(n-k)); \\ Michel Marcus, Feb 02 2014
-
PARI
a(n) = my(f = factor(n)); ((n - 6*n^2) * sigma(f) + 5*n * sigma(f, 3)) / 24; \\ Amiram Eldar, Jan 04 2025
-
Python
from sympy import divisor_sigma def A000441(n): return (n*(1-6*n)*divisor_sigma(n)+5*n*divisor_sigma(n,3))//24 # Chai Wah Wu, Jul 25 2024
Formula
G.f.: x*f(x)*f'(x), where f(x) = Sum_{k>=1} k*x^k/(1 - x^k). - Ilya Gutkovskiy, Apr 28 2018
a(n) = (n/24 - n^2/4)*sigma_1(n) + (5*n/24)*sigma_3(n). - Ridouane Oudra, Sep 17 2020
Sum_{k=1..n} a(k) ~ Pi^4 * n^5 / 2160. - Vaclav Kotesovec, May 09 2022
Extensions
More terms from Sean A. Irvine, Nov 14 2010
a(1)=0 prepended by Michel Marcus, Feb 02 2014
Comments