cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A000441 a(n) = Sum_{k=1..n-1} k*sigma(k)*sigma(n-k).

Original entry on oeis.org

0, 1, 9, 34, 95, 210, 406, 740, 1161, 1920, 2695, 4116, 5369, 7868, 9690, 13640, 16116, 22419, 25365, 34160, 38640, 50622, 55154, 73320, 77225, 100100, 107730, 135576, 141085, 182340, 184760, 233616, 243408, 297738, 301420, 385110, 377511, 467210, 478842
Offset: 1

Views

Author

Keywords

Comments

Apart from initial zero this is the convolution of A340793 and A143128. - Omar E. Pol, Feb 16 2021

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Jacques Touchard, On prime numbers and perfect numbers, Scripta Math., 129 (1953), 35-39.

Crossrefs

Programs

  • Maple
    S:=(n,e)->add(k^e*sigma(k)*sigma(n-k),k=1..n-1);
    f:=e->[seq(S(n,e),n=1..30)];f(1); # N. J. A. Sloane, Jul 03 2015
  • Mathematica
    a[n_] := Sum[k*DivisorSigma[1, k]*DivisorSigma[1, n-k], {k, 1, n-1}]; Array[a, 40] (* Jean-François Alcover, Feb 08 2016 *)
  • PARI
    a(n) = sum(k=1, n-1, k*sigma(k)*sigma(n-k)); \\ Michel Marcus, Feb 02 2014
    
  • PARI
    a(n) = my(f = factor(n)); ((n - 6*n^2) * sigma(f) + 5*n * sigma(f, 3)) / 24; \\ Amiram Eldar, Jan 04 2025
    
  • Python
    from sympy import divisor_sigma
    def A000441(n): return (n*(1-6*n)*divisor_sigma(n)+5*n*divisor_sigma(n,3))//24 # Chai Wah Wu, Jul 25 2024

Formula

Convolution of A000203 with A064987. - Sean A. Irvine, Nov 14 2010
G.f.: x*f(x)*f'(x), where f(x) = Sum_{k>=1} k*x^k/(1 - x^k). - Ilya Gutkovskiy, Apr 28 2018
a(n) = (n/24 - n^2/4)*sigma_1(n) + (5*n/24)*sigma_3(n). - Ridouane Oudra, Sep 17 2020
Sum_{k=1..n} a(k) ~ Pi^4 * n^5 / 2160. - Vaclav Kotesovec, May 09 2022

Extensions

More terms from Sean A. Irvine, Nov 14 2010
a(1)=0 prepended by Michel Marcus, Feb 02 2014

A000477 a(n) = Sum_{k=1..n-1} k^2*sigma(k)*sigma(n-k).

Original entry on oeis.org

0, 1, 15, 76, 275, 720, 1666, 3440, 6129, 11250, 17545, 28896, 41405, 65072, 85950, 128960, 162996, 238545, 286995, 404600, 482160, 662112, 756470, 1042560, 1150625, 1549730, 1732590, 2257920, 2443105, 3250800, 3421160, 4452096, 4791600, 6039522, 6296500
Offset: 1

Views

Author

Keywords

Examples

			G.f. = x^2 + 15*x^3 + 76*x^4 + 275*x^5 + 720*x^6 + 1666*x^7 + 3440*x^8 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Jacques Touchard, On prime numbers and perfect numbers, Scripta Math., 129 (1953), 35-39.

Crossrefs

Cf. A000203 (sigma_1), A001158 (sigma_3).

Programs

  • Maple
    with(numtheory): S:=(n,e)->add(k^e*sigma(k)*sigma(n-k),k=1..n-1); f:=e->[seq(S(n,e),n=1..30)]; f(2); # N. J. A. Sloane, Jul 03 2015
  • Mathematica
    a[n_] := Sum[k^2 DivisorSigma[1, k] DivisorSigma[1, n-k], {k, 1, n-1}]; Array[a, 35] (* Jean-François Alcover, Feb 08 2016 *)
  • PARI
    a(n) = sum(k=1, n-1, k^2*sigma(k)*sigma(n-k)); \\ Michel Marcus, Feb 02 2014
    
  • PARI
    a(n) = my(f = factor(n)); ((n^2 - 4*n^3) * sigma(f) + 3*n^2 * sigma(f, 3)) / 24; \\ Amiram Eldar, Jan 04 2025

Formula

a(n) = Sum_{k=1..n-1} k^2*sigma(k)*sigma(n-k). - Sean A. Irvine, Nov 14 2010
G.f.: x*f(x)*g'(x), where f(x) = Sum_{k>=1} k*x^k/(1 - x^k) and g(x) = Sum_{k>=1} k^2*x^k/(1 - x^k)^2. - Ilya Gutkovskiy, May 02 2018
a(n) = (n^2/24 - n^3/6)*sigma_1(n) + (n^2/8)*sigma_3(n). - Ridouane Oudra, Sep 15 2020
Sum_{k=1..n} a(k) ~ Pi^4 * n^6 / 4320. - Vaclav Kotesovec, May 09 2022

Extensions

More terms from Sean A. Irvine, Nov 14 2010
a(1)=0 prepended by Michel Marcus, Feb 02 2014

A000499 a(n) = Sum_{k=1..n-1} k^3*sigma(k)*sigma(n-k).

Original entry on oeis.org

0, 1, 27, 184, 875, 2700, 7546, 17600, 35721, 72750, 126445, 223776, 353717, 595448, 843750, 1349120, 1827636, 2808837, 3600975, 5306000, 6667920, 9599172, 11509982, 16416000, 19015625, 26605670, 30902310, 41686848, 46948825, 64233000, 70306760, 94089216
Offset: 1

Views

Author

Keywords

Examples

			G.f. = x^2 + 27*x^3 + 184*x^4 + 875*x^5 + 2700*x^6 + 7546*x^7 + 17600*x^8 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Jacques Touchard, On prime numbers and perfect numbers, Scripta Math., 129 (1953), 35-39.

Crossrefs

Cf. A000203 (sigma_1), A001158 (sigma_3).

Programs

  • Maple
    S:=(n,e)->add(k^e*sigma(k)*sigma(n-k),k=1..n-1); f:=e->[seq(S(n,e),n=1..30)]; f(3);
  • Mathematica
    a[n_] := Sum[k^3*DivisorSigma[1, k]*DivisorSigma[1, n - k], {k, 1, n - 1}]; Array[a, 32] (* Jean-François Alcover, Feb 09 2016 *)
  • PARI
    a(n) = sum(k=1, n-1, k^3*sigma(k)*sigma(n-k)); \\ Michel Marcus, Feb 02 2014
    
  • PARI
    a(n) = my(f = factor(n)); ((n^3 - 3*n^4) * sigma(f) + 2*n^3 * sigma(f, 3)) / 24; \\ Amiram Eldar, Jan 04 2025

Formula

a(n) = Sum_{k=1..n-1} k^3*sigma(k)*sigma(n-k). - Michel Marcus, Feb 02 2014
a(n) = (n^3/24 - n^4/8)*sigma_1(n) + (n^3/12)*sigma_3(n). - Ridouane Oudra, Sep 15 2020
Sum_{k=1..n} a(k) ~ Pi^4 * n^7 / 7560. - Vaclav Kotesovec, Aug 08 2022

Extensions

More terms and 0 prepended by Michel Marcus, Feb 02 2014

A259692 a(n) = Sum_{k=1..n-1} k^4*sigma(k)*sigma(n-k).

Original entry on oeis.org

0, 1, 51, 472, 2963, 10764, 36538, 95936, 222561, 502638, 974245, 1850784, 3234269, 5826680, 8857926, 15093248, 21945012, 35369541, 48358119, 74448464, 98697648, 148971972, 187495262, 276509952, 336495665, 488970662, 590163894, 823791168, 966018241, 1358404776
Offset: 1

Views

Author

N. J. A. Sloane, Jul 03 2015

Keywords

Comments

This was formerly A001477.

Crossrefs

Programs

  • Maple
    S:=(n,e)->add(k^e*sigma(k)*sigma(n-k),k=1..n-1); f:=e->[seq(S(n,e),n=1..30)]; f(4);
  • Mathematica
    a[n_]:=Sum[k^4*DivisorSigma[1,k]*DivisorSigma[1,n-k],{k,1,n-1}]; Table[a[n],{n,1,30}] (* Robert P. P. McKone, Sep 09 2023 *)
  • PARI
    a(n) = sum(k=1, n-1, k^4*sigma(k)*sigma(n-k)) \\ Colin Barker, Jul 16 2015

Formula

From Ridouane Oudra, Sep 09 2023: (Start)
a(n) = (n^4/24 - n^5/10)*sigma_1(n) + (5*n^4/84)*sigma_3(n) - (691/635040)*sigma_5(n) - (13/127008)*sigma_11(n) + (691/2520)*A279889(n).
a(n) = (n^4/24 - n^5/10)*sigma_1(n) - (691/1512000 - 5*n^4/84)*sigma_3(n) - (691/756000)*sigma_7(n) + (13/72000)*sigma_11(n) - (691/3150)*A279964(n).
a(n) = (-691/1596672 + n^4/24 - n^5/10)*sigma_1(n) + (5*n^4/84)*sigma_3(n) - (691/145152 - 691*n/120960)*sigma_9(n) - (65/38016)*sigma_11(n) + (691/6048)*f(n), where f(n) = Sum_{k=1..n-1} sigma_1(k)*sigma_9(n-k). (End)

A259693 a(n) = Sum_{k=1..n-1} k^5*sigma(k)*sigma(n-k).

Original entry on oeis.org

0, 1, 99, 1264, 10475, 44820, 185626, 546560, 1454841, 3640950, 7868245, 16042176, 31040789, 59796968, 97525350, 177090560, 276689076, 467100189, 681356055, 1096023200, 1533162960, 2426544252, 3205401854, 4885539840, 6250705625, 9431254430, 11831779350
Offset: 1

Views

Author

N. J. A. Sloane, Jul 03 2015

Keywords

Comments

This was formerly A001478.

Crossrefs

Programs

  • Maple
    S:=(n,e)->add(k^e*sigma(k)*sigma(n-k),k=1..n-1); f:=e->[seq(S(n,e),n=1..30)]; f(5);
  • Mathematica
    S[n_, e_] := Sum[k^e * DivisorSigma[1, k] * DivisorSigma[1, n - k], {k, 1, n - 1}]
    f[e_] := Table[S[n, e], {n, 1, 27}];f[5] (* James C. McMahon, Dec 19 2023 *)
  • PARI
    a(n) = sum(k=1, n-1, k^5*sigma(k)*sigma(n-k)) \\ Colin Barker, Jul 16 2015

Formula

From Ridouane Oudra, Dec 08 2023: (Start)
a(n) = (n^5/24 - n^6/12)*sigma_1(n) + (5*n^5/112)*sigma_3(n) - (691*n/254016)*sigma_5(n) - (65*n/254016)*sigma_11(n) + (691*n/1008)*A279889(n).
a(n) = (n^5/24 - n^6/12)*sigma_1(n) + (5*n^5/112 - 691*n/604800)*sigma_3(n) - (691*n/302400)*sigma_7(n) + (13*n/28800)*sigma_11(n) - (691*n/1260)*A279964(n).
a(n) = (-3455*n/3193344 + n^5/24 - n^6/12)*sigma_1(n) + (5*n^5/112)*sigma_3(n) + (-3455*n/290304 + 691*n^2/48384)*sigma_9(n) - (325*n/76032)*sigma_11(n) + (3455*n/12096)*f(n), where f(n) = Sum_{k=1..n-1} sigma_1(k)*sigma_9(n-k). (End)

A259695 a(n) = Sum_{k=1..n-1} k^7 * sigma(k) * sigma(n-k).

Original entry on oeis.org

0, 1, 387, 9904, 142475, 850500, 5287786, 19400960, 68736681, 210682950, 565317445, 1328193216, 3163440917, 6945663368, 13045807350, 26914795520, 48673795956, 89900901837, 149363037975, 262436871200, 409003474320, 711715515852, 1035199173422, 1683466675200
Offset: 1

Views

Author

N. J. A. Sloane, Jul 03 2015

Keywords

Comments

This was formerly A001480.

Crossrefs

Programs

  • Maple
    S:=(n,e)->add(k^e*sigma(k)*sigma(n-k),k=1..n-1); f:=e->[seq(S(n,e),n=1..30)]; f(7);
  • Mathematica
    Table[Sum[k^7 DivisorSigma[1,k]DivisorSigma[1,n-k],{k,n-1}],{n,30}] (* Harvey P. Dale, Dec 14 2015 *)
  • PARI
    a(n) = sum(k=1, n-1, k^7*sigma(k)*sigma(n-k)) \\ Colin Barker, Jul 16 2015

A259696 a(n) = Sum_{k=1..n-1} k^8*sigma(k)*sigma(n-k).

Original entry on oeis.org

0, 1, 771, 28552, 540563, 3830364, 29209978, 119337536, 490114881, 1659932478, 4961414965, 12516905184, 33139873949, 77515802840, 156374512326, 344012784128, 669604434612, 1292506329141, 2292202227639, 4210108803824, 6929184038448, 12639642518772, 19287324979742, 32384260599552
Offset: 1

Views

Author

N. J. A. Sloane, Jul 03 2015

Keywords

Comments

This was formerly A001481.

Crossrefs

Programs

  • Maple
    S:=(n,e)->add(k^e*sigma(k)*sigma(n-k),k=1..n-1); f:=e->[seq(S(n,e),n=1..30)]; f(8);
  • PARI
    a(n) = sum(k=1, n-1, k^8*sigma(k)*sigma(n-k)) \\ Colin Barker, Jul 16 2015
Showing 1-7 of 7 results.