cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A003627 Primes of the form 3n-1.

Original entry on oeis.org

2, 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113, 131, 137, 149, 167, 173, 179, 191, 197, 227, 233, 239, 251, 257, 263, 269, 281, 293, 311, 317, 347, 353, 359, 383, 389, 401, 419, 431, 443, 449, 461, 467, 479, 491, 503, 509, 521, 557, 563, 569, 587
Offset: 1

Views

Author

Keywords

Comments

Inert rational primes in the field Q(sqrt(-3)). - N. J. A. Sloane, Dec 25 2017
Primes p such that 1+x+x^2 is irreducible over GF(p). - Joerg Arndt, Aug 10 2011
Primes p dividing sum(k=0,p,C(2k,k)) -1 = A006134(p)-1. - Benoit Cloitre, Feb 08 2003
A039701(A049084(a(n))) = 2; A134323(A049084(a(n))) = -1. - Reinhard Zumkeller, Oct 21 2007
The set of primes of the form 3n - 1 is a superset of the set of lesser of twin primes larger than three (A001359). - Paul Muljadi, Jun 05 2008
Primes of this form do not occur in or as divisors of {n^2+n+1}. See A002383 (n^2+n+1 = prime), A162471 (prime divisors of n^2+n+1 not in A002383), and A002061 (numbers of the form n^2-n+1). - Daniel Tisdale, Jul 04 2009
Or, primes not in A007645. A003627 UNION A007645 = A000040. Also, primes of the form 6*k-5/2-+3/2. - Juri-Stepan Gerasimov, Jan 28 2010
Except for first term "2", all these prime numbers are of the form: 6*n-1. - Vladimir Joseph Stephan Orlovsky, Jul 13 2011
A088534(a(n)) = 0. - Reinhard Zumkeller, Oct 30 2011
For n>1: Numbers k such that (k-4)! mod k =(-1)^(floor(k/3)+1)*floor((k+1)/6), k>4. - Gary Detlefs, Jan 02 2012
Binomial(a(n),3)/a(n)= (3*A024893(n)^2+A024893(n))/2, n>1. - Gary Detlefs, May 06 2012
For every prime p in this sequence, 3 is a 9th power mod p. See Williams link. - Michel Marcus, Nov 12 2017
2 adjoined to A007528. - David A. Corneth, Nov 12 2017
For n >= 2 there exists a polygonal number P_s(3) = 3s - 3 = a(n) + 1. These are the only primes p with P_s(k) = p + 1, s >= 3, k >= 3, since P_s(k) - 1 is composite for k > 3. - Ralf Steiner, May 17 2018

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Primes of form 3n+1 give A002476.
These are the primes arising in A024893, A087370, A088879. A091177 gives prime index.
Subsequence of A034020.

Programs

  • Haskell
    a003627 n = a003627_list !! (n-1)
    a003627_list = filter ((== 2) . (`mod` 3)) a000040_list
    -- Reinhard Zumkeller, Oct 30 2011
    
  • Magma
    [n: n in PrimesUpTo(720) | n mod 3 eq 2]; // Bruno Berselli, Apr 05 2011
    
  • Maple
    t1 := {}; for n from 0 to 500 do if isprime(3*n+2) then t1 := {op(t1),3*n+2}; fi; od: A003627 := convert(t1,list);
  • Mathematica
    Select[Range[-1, 600, 3], PrimeQ[#] &] (* Vincenzo Librandi, Jun 17 2015 *)
    Select[Prime[Range[200]],Mod[#,3]==2&] (* Harvey P. Dale, Jan 31 2023 *)
  • PARI
    is(n)=n%3==2 && isprime(n) \\ Charles R Greathouse IV, Mar 20 2013

Formula

From R. J. Mathar, Apr 03 2011: (Start)
Sum_{n>=1} 1/a(n)^2 = 0.30792... = A085548 - 1/9 - A175644.
Sum_{n>=1} 1/a(n)^3 = 0.134125... = A085541 - 1/27 - A175645. (End)

A007645 Generalized cuban primes: primes of the form x^2 + xy + y^2; or primes of the form x^2 + 3*y^2; or primes == 0 or 1 (mod 3).

Original entry on oeis.org

3, 7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 97, 103, 109, 127, 139, 151, 157, 163, 181, 193, 199, 211, 223, 229, 241, 271, 277, 283, 307, 313, 331, 337, 349, 367, 373, 379, 397, 409, 421, 433, 439, 457, 463, 487, 499, 523, 541, 547, 571, 577, 601, 607, 613
Offset: 1

Views

Author

Keywords

Comments

Also, odd primes p such that -3 is a square mod p. - N. J. A. Sloane, Dec 25 2017
Equivalently, primes of the form p = (x^3 - y^3)/(x - y). If x=y+1 we get the cuban primes A002407, which is therefore a subsequence.
These are not to be confused with the Eisenstein primes, which are the primes in the ring of integers Z[w], where w = (-1+sqrt(-3))/2. The present sequence gives the rational primes which are also Eisenstein primes. - N. J. A. Sloane, Feb 06 2008
Also primes of the form x^2+3y^2 and, except for 3, x^2+xy+7y^2. See A140633. - T. D. Noe, May 19 2008
Conjecture: this sequence is Union(A002383,A162471). - Daniel Tisdale, Jul 04 2009
Primes p such that antiharmonic mean B(p) of the numbers k < p such that gcd(k, p) = 1 is not integer, where B(p) = A053818(p) / A023896(p) = A175505(p) / A175506(p) = (2p - 1) / 3. Primes p such that A175506(p) > 1. Subsequence of A179872. Union a(n) + A179891 = A179872. Example: a(6) = 37 because B(37) = A053818(37) / A023896(37) = A175505(37) / A175506(37) = 16206 / 666 = 73 / 3 (not integer). Cf. A179871, A179872, A179873, A179874, A179875, A179876, A179877, A179878, A179879, A179880, A179882, A179883, A179884, A179885, A179886, A179887, A179890, A179891, A003627, A034934. - Jaroslav Krizek, Aug 01 2010
Subsequence of Loeschian numbers, cf. A003136 and A024614; A088534(a(n)) > 0. - Reinhard Zumkeller, Oct 30 2011
Primes such that there exist a unique x, y, with 1 < x <= y < p, x + y == 1 (mod p) and x * y == 1 (mod p). - Jon Perry, Feb 02 2014
The prime factors of A002061. - Richard R. Forberg, Dec 10 2014
This sequence gives the primes p which solve s^2 == -3 (mod 4*p) (see Buell, Proposition 4.1., p. 50, for Delta = -3). p = 2 is not a solution. x^2 == -3 (mod 4) has solutions for all odd x. x^2 == -3 (mod p) has for odd primes p, not 3, the solutions of Legendre(-3|p) = +1 which are p == {1, 7} (mod 12). For p = 3 the representative solution is x = 0. Hence the solution of s^2 == -3 (mod 4*p) are the odd primes p = 3 and p == {1, 7} (mod 12) (or the primes p = 0, 1 (mod 3)). - Wolfdieter Lang, May 22 2021

References

  • D. A. Buell, Binary Quadratic Forms. Springer-Verlag, NY, 1989, p. 50.
  • Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, pp. 220-223, 1996.
  • David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989, p. 7.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Wagon, S. "Eisenstein Primes." Section 9.8 in Mathematica in Action. New York: W. H. Freeman, pp. 319-323, 1991.

Crossrefs

Subsequence of A003136.
Subsequences include A002407, A002648, and A201477.
Apart from initial term, same as A045331.
Cf. A001479, A001480 (x and y such that a(n) = x^2 + 3y^2).
Primes in A003136 and A034017.

Programs

  • Haskell
    a007645 n = a007645_list !! (n-1)
    a007645_list = filter ((== 1) . a010051) $ tail a003136_list
    -- Reinhard Zumkeller, Jul 11 2013, Oct 30 2011
  • Maple
    select(isprime,[3, seq(6*k+1, k=1..1000)]); # Robert Israel, Dec 12 2014
  • Mathematica
    Join[{3},Select[Prime[Range[150]],Mod[#,3]==1&]] (* Harvey P. Dale, Aug 21 2021 *)
  • PARI
    forprime(p=2,1e3,if(p%3<2,print1(p", "))) \\ Charles R Greathouse IV, Jun 16 2011
    

Formula

p == 0 or 1 (mod 3).
{3} UNION A002476. - R. J. Mathar, Oct 28 2008

Extensions

Entry revised by N. J. A. Sloane, Jan 29 2013

A108768 Primes that appear in the sequence p:=x^2+x+1, sieved with a quadratic sieve construction.

Original entry on oeis.org

3, 7, 13, 7, 31, 43, 19, 73, 13, 37, 19, 157, 61, 211, 241, 307, 127, 421, 463, 79, 601, 31, 37, 757, 271, 67, 331, 151, 1123, 397, 97, 43, 67, 1483, 223, 547, 1723, 139, 631, 283, 109, 103, 61, 181, 2551, 379, 919, 409, 2971, 79, 103, 3307, 163, 3541, 523, 97, 3907
Offset: 1

Views

Author

Bernhard Helmes (pi(AT)devalco.de), Jun 24 2005

Keywords

Comments

This sequence appears in a website available on web.archive (see Quadratic Sieve Construction link). There is a single appearance of the first term 3, while all other primes appear twice. See A256148 for a version of the sequence consistent with the current version of the website where each prime appears only once. - Ray Chandler, Jul 05 2015

Crossrefs

Programs

  • MuPAD
    // from Quadratic Sieve Construction link.
    liste_max:=10000;
    for x from 1 to liste_max do
        liste_x[x]:=x^2+x+1;
        liste_prim[x]:=1;
    end_for;
    x:=1;
    while (x1) then
         print ("Prim ", p, "x = ", x, isprime (p)) ;
         // Aussiebung
         while (stelleRay Chandler, Jul 05 2015
Showing 1-3 of 3 results.