cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 36 results. Next

A272075 Primes of the form k^4 + 29*k^2 + 101.

Original entry on oeis.org

101, 131, 233, 443, 821, 1451, 2441, 3923, 6053, 9011, 13001, 18251, 25013, 33563, 44201, 57251, 73061, 92003, 114473, 140891, 207371, 295283, 476681, 951491, 1078373, 1369961, 1536251, 1913963, 3472523, 3804341, 4159451, 4943843, 5834531, 7972043, 9925541
Offset: 1

Views

Author

Robert Price, Apr 19 2016

Keywords

Examples

			233 is prime and it is in this sequence since 233 = 2^4 + 29*2^2 + 101.
		

Crossrefs

Programs

  • Mathematica
    n = Range[0, 100]; Select[#^4 + 29#^2 + 101, PrimeQ[#] &]
  • PARI
    lista(nn) = for(n=0, nn, if(ispseudoprime(p=n^4+29*n^2+101), print1(p, ", "))); \\ Altug Alkan, Apr 19 2016

A272160 Primes of the form abs(8n^2 - 488n + 7243) in order of increasing nonnegative values of n.

Original entry on oeis.org

7243, 6763, 6299, 5851, 5419, 5003, 4603, 4219, 3851, 3499, 3163, 2843, 2539, 2251, 1979, 1723, 1483, 1259, 1051, 859, 683, 523, 379, 251, 139, 43, 37, 101, 149, 181, 197, 197, 181, 149, 101, 37, 43, 139, 251, 379, 523, 683, 859, 1051, 1259, 1483, 1723, 1979
Offset: 1

Views

Author

Robert Price, Apr 21 2016

Keywords

Examples

			5419 is in this sequence since 8*4^2 - 488*4 + 7243 = 128-1952+7243 = 5419 is prime.
		

Crossrefs

Programs

  • Mathematica
    n = Range[0, 100]; Select[Abs[8n^2 - 488n + 7243], PrimeQ[#] &]
  • PARI
    lista(nn) = for(n=0, nn, if(isprime(p=abs(8*n^2-488*n+7243)), print1(p, ", "))); \\ Altug Alkan, Apr 21 2016

A272159 Numbers k such that abs(8*k^2 - 488*k + 7243) is prime.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 64, 65, 66, 67, 71
Offset: 1

Views

Author

Robert Price, Apr 21 2016

Keywords

Comments

From Robert Israel, Apr 21 2016: (Start)
n such that either n <= 61 or 8n^2 - 488n + 7243 is prime.
The first number not in the sequence is 62. (End)

Examples

			4 is in this sequence since 8*4^2 - 488*4 + 7243 = 128-1952+7243 = 5419 is prime.
		

Crossrefs

Programs

  • Maple
    select(n -> isprime(abs(8*n^2 - 488*n + 7243)), [$0..1000]); # Robert Israel, Apr 21 2016
  • Mathematica
    Select[Range[0, 100], PrimeQ[8#^2 - 488# + 7243] &]
  • PARI
    lista(nn) = for(n=0, nn, if(isprime(abs(8*n^2-488*n+7243)), print1(n, ", "))); \\ Altug Alkan, Apr 21 2016

A272285 Primes of the form 43*n^2 - 537*n + 2971 in order of increasing nonnegative values of n.

Original entry on oeis.org

2971, 2477, 2069, 1747, 1511, 1361, 1297, 1319, 1427, 1621, 1901, 2267, 2719, 3257, 3881, 4591, 5387, 6269, 7237, 8291, 9431, 10657, 11969, 13367, 14851, 16421, 18077, 19819, 21647, 23561, 25561, 27647, 29819, 32077, 34421, 39367, 41969, 44657, 47431, 50291
Offset: 1

Views

Author

Robert Price, Apr 24 2016

Keywords

Examples

			1511 is in this sequence since 43*4^2 - 537*4 + 2971 = 688-2148+2971 = 1511 is prime.
		

Crossrefs

Programs

  • Mathematica
    n = Range[0, 100]; Select[43n^2 - 537n + 2971, PrimeQ[#] &]
  • PARI
    lista(nn) = for(n=0, nn, if(ispseudoprime(p=43*n^2 - 537*n + 2971), print1(p, ", "))); \\ Altug Alkan, Apr 24 2016

A272284 Numbers n such that 43*n^2 - 537*n + 2971 is prime.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 49, 50, 51, 55, 56, 57, 60, 64, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 79, 80, 81
Offset: 1

Views

Author

Robert Price, Apr 24 2016

Keywords

Comments

35 is the smallest number not in this sequence.

Examples

			4 is in this sequence since 43*4^2 - 537*4 + 2971 = 688-2148+2971 = 1511 is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 100], PrimeQ[43#^2 - 537# + 2971] &]
  • PARI
    lista(nn) = for(n=0, nn, if(ispseudoprime(43*n^2 - 537*n + 2971), print1(n, ", "))); \\ Altug Alkan, Apr 24 2016

A272401 Primes of the form abs(3n^3 - 183n^2 + 3318n - 18757) in order of increasing nonnegative n.

Original entry on oeis.org

18757, 15619, 12829, 10369, 8221, 6367, 4789, 3469, 2389, 1531, 877, 409, 109, 41, 59, 37, 229, 499, 829, 1201, 1597, 1999, 2389, 2749, 3061, 3307, 3469, 3529, 3469, 3271, 2917, 2389, 1669, 739, 419, 1823, 3491, 5441, 7691, 10259, 13163, 16421, 20051, 24071
Offset: 1

Views

Author

Robert Price, Apr 28 2016

Keywords

Examples

			8221 is in this sequence since abs(3*4^3 - 183*4^2 + 3318*4 - 18757) = abs(192-2928+13272-18757) = 8221 is prime.
		

Crossrefs

Programs

  • Mathematica
    n = Range[0, 100]; Select[3n^3 - 183n^2 + 3318n - 18757 , PrimeQ[#] &]

A272118 Numbers k such that abs(6*k^2 - 342*k + 4903) is prime.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 61, 62, 64, 66, 67, 68, 69, 71, 72
Offset: 1

Views

Author

Robert Price, Apr 20 2016

Keywords

Examples

			4 is in this sequence since 6*4^2 - 342*4 + 4903 = 96-1368+4903 = 3631 is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 100], PrimeQ[6*#^2 - 342*# + 4903] &]
  • PARI
    isok(n) = isprime(abs(6*n^2 - 342*n + 4903)); \\ Michel Marcus, Apr 21 2016

A272302 Nonnegative numbers n such that abs(3n^3 - 183n^2 + 3318n - 18757) is prime.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 51, 53, 56, 57, 59, 60, 62, 63, 65, 66, 69, 70, 74, 79, 80, 81, 82, 85
Offset: 1

Views

Author

Robert Price, Apr 28 2016

Keywords

Comments

47 is the smallest number not in this sequence.

Examples

			4 is in this sequence since abs(3*4^3 - 183*4^2 + 3318*4 - 18757) = abs(192-2928+13272-18757) = 8221 is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 100], PrimeQ[3#^3 - 183#^2 + 3318# - 18757 ] &]
  • PARI
    is(n)=isprime(abs(3*n^2-183*n^2+3318*n-18757)) \\ Charles R Greathouse IV, Feb 17 2017

A272438 Primes of the form abs(-66n^3 + 3845n^2 - 60897n + 251831) in order of increasing nonnegative n.

Original entry on oeis.org

251831, 194713, 144889, 101963, 65539, 35221, 10613, 8681, 23057, 32911, 38639, 40637, 39301, 35027, 28211, 19249, 8537, 3529, 16553, 30139, 43891, 57413, 70309, 82183, 92639, 101281, 107713, 111539, 112363, 109789, 103421, 92863, 77719, 57593, 32089, 811
Offset: 1

Views

Author

Robert Price, Apr 29 2016

Keywords

Examples

			65539 is in this sequence since abs(-66*4^3 + 3845*4^2 - 60897*4 + 251831) = abs(-4224+61520-243588+251831) = 65539 is prime.
		

Crossrefs

Programs

  • Mathematica
    n = Range[0, 100]; Select[-66n^3 + 3845n^2 - 60897n + 251831, PrimeQ[#] &]

A272437 Nonnegative numbers n such that abs(-66n^3 + 3845n^2 - 60897n + 251831) is prime.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 49, 51, 54, 58, 65, 68, 70, 75, 76, 77, 82, 88, 89, 97, 99, 101, 102, 104, 109
Offset: 1

Views

Author

Robert Price, Apr 29 2016

Keywords

Comments

46 is the smallest number not in this sequence.

Examples

			4 is in this sequence since abs(-66*4^3 + 3845*4^2 - 60897*4 + 251831) = abs(-4224+61520-243588+251831) = 65539 is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 109], PrimeQ[-66#^3 + 3845#^2 - 60897# + 251831] &]
  • PARI
    is(n)=isprime(abs(66*n^3-3845*n^2+60897*n-251831)) \\ Charles R Greathouse IV, Feb 20 2017
Showing 1-10 of 36 results. Next