cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A272401 Primes of the form abs(3n^3 - 183n^2 + 3318n - 18757) in order of increasing nonnegative n.

Original entry on oeis.org

18757, 15619, 12829, 10369, 8221, 6367, 4789, 3469, 2389, 1531, 877, 409, 109, 41, 59, 37, 229, 499, 829, 1201, 1597, 1999, 2389, 2749, 3061, 3307, 3469, 3529, 3469, 3271, 2917, 2389, 1669, 739, 419, 1823, 3491, 5441, 7691, 10259, 13163, 16421, 20051, 24071
Offset: 1

Views

Author

Robert Price, Apr 28 2016

Keywords

Examples

			8221 is in this sequence since abs(3*4^3 - 183*4^2 + 3318*4 - 18757) = abs(192-2928+13272-18757) = 8221 is prime.
		

Crossrefs

Programs

  • Mathematica
    n = Range[0, 100]; Select[3n^3 - 183n^2 + 3318n - 18757 , PrimeQ[#] &]

A272438 Primes of the form abs(-66n^3 + 3845n^2 - 60897n + 251831) in order of increasing nonnegative n.

Original entry on oeis.org

251831, 194713, 144889, 101963, 65539, 35221, 10613, 8681, 23057, 32911, 38639, 40637, 39301, 35027, 28211, 19249, 8537, 3529, 16553, 30139, 43891, 57413, 70309, 82183, 92639, 101281, 107713, 111539, 112363, 109789, 103421, 92863, 77719, 57593, 32089, 811
Offset: 1

Views

Author

Robert Price, Apr 29 2016

Keywords

Examples

			65539 is in this sequence since abs(-66*4^3 + 3845*4^2 - 60897*4 + 251831) = abs(-4224+61520-243588+251831) = 65539 is prime.
		

Crossrefs

Programs

  • Mathematica
    n = Range[0, 100]; Select[-66n^3 + 3845n^2 - 60897n + 251831, PrimeQ[#] &]

A272444 Primes of the form abs(n^5 - 99n^4 + 3588n^3 - 56822n^2 + 348272n - 286397) in order of increasing nonnegative n.

Original entry on oeis.org

286397, 8543, 210011, 336121, 402851, 424163, 412123, 377021, 327491, 270631, 212123, 156353, 106531, 64811, 32411, 9733, 3517, 8209, 5669, 2441, 14243, 27763, 41051, 52301, 59971, 62903, 60443, 52561, 39971, 24251, 7963, 5227, 10429, 1409, 29531, 91673
Offset: 1

Views

Author

Robert Price, Apr 29 2016

Keywords

Examples

			402851 is in this sequence since abs(4^5 - 99*4^4 + 3588*4^3 - 56822*4^2 + 348272*4 - 286397) = abs(1024-25344+229632-909152+1393088-286397) = 402851 is prime.
		

Crossrefs

Programs

  • Mathematica
    n = Range[0, 100]; Select[n^5 - 99n^4 + 3588n^3 - 56822n^2 + 348272n - 286397, PrimeQ[#] &]
  • PARI
    lista(nn) = for(n=0, nn, if(isprime(p=abs(n^5-99*n^4+3588*n^3-56822*n^2+348272*n-286397)), print1(p, ", "))); \\ Altug Alkan, Apr 29 2016

A272410 Primes of the form abs(n^4 - 97n^3 + 3294n^2 - 45458n + 213589) in order of increasing nonnegative n.

Original entry on oeis.org

213589, 171329, 135089, 104323, 78509, 57149, 39769, 25919, 15173, 7129, 1409, 2341, 4451, 5227, 4951, 3881, 2251, 271, 1873, 4019, 6029, 7789, 9209, 10223, 10789, 10889, 10529, 9739, 8573, 7109, 5449, 3719, 2069, 673, 271, 541, 109, 1949, 5273, 10399, 17669
Offset: 1

Views

Author

Robert Price, Apr 30 2016

Keywords

Examples

			78509 is in this sequence since abs(4^4 - 97*4^3 + 3294*4^2 - 45458*4 + 213589) = abs(256-6208+52704-181832+213589) = 78509 is prime.
		

Crossrefs

Programs

  • Mathematica
    n = Range[0, 100]; Select[n^4 - 97n^3 + 3294n^2 - 45458n + 213589, PrimeQ[#] &]

A272555 Primes of the form abs(1/(36)(n^6 - 126n^5 + 6217n^4 - 153066n^3 + 1987786n^2 - 13055316n + 34747236)) in order of increasing nonnegative n.

Original entry on oeis.org

965201, 653687, 429409, 272563, 166693, 98321, 56597, 32969, 20873, 15443, 13241, 12007, 10429, 7933, 4493, 461, 3583, 6961, 9007, 9157, 7019, 2423, 4549, 13553, 23993, 35051, 45737, 54959, 61613, 64693, 63421, 57397, 46769, 32423, 16193, 1091, 8443, 6271
Offset: 1

Views

Author

Robert Price, May 02 2016

Keywords

Examples

			166693 is in this sequence since abs(1/(36)(4^6 - 126*4^5 + 6217*4^4 - 153066*4^3 + 1987786*4^2 - 13055316*4 + 34747236)) = abs((4096 - 129024 + 1591552 - 9796224 + 31804576 - 5222126 + 34747236)/36) = 166693 is prime.
		

Crossrefs

Programs

  • Mathematica
    n = Range[0, 100]; Select[1/(36)(n^6 - 126n^5 + 6217n^4 - 153066n^3 + 1987786n^2 - 13055316n + 34747236), PrimeQ[#] &]

A272710 Primes of the form abs((1/4)*(n^5 - 133n^4 + 6729n^3 - 158379n^2 + 1720294n - 6823316)) in order of increasing nonnegative n.

Original entry on oeis.org

1705829, 1313701, 991127, 729173, 519643, 355049, 228581, 134077, 65993, 19373, 10181, 26539, 33073, 32687, 27847, 20611, 12659, 5323, 383, 3733, 4259, 1721, 3923, 12547, 23887, 37571, 53149, 70123, 87977, 106207, 124351, 142019, 158923, 174907, 189977
Offset: 1

Views

Author

Robert Price, May 04 2016

Keywords

Examples

			519643 is in this sequence since abs(1/4 (n^5 - 133n^4 + 6729n^3 - 158379n^2 + 1720294n - 6823316)) = abs((1024 - 34048 + 430656 - 2534064 + 6881176 - 6823316)/4) = 519643 is prime.
		

Crossrefs

Programs

  • Mathematica
    n = Range[0, 100]; Select[1/4 (n^5 - 133n^4 + 6729n^3 - 158379n^2 + 1720294n - 6823316), PrimeQ[#] &]
Showing 1-6 of 6 results.