cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Amrit Awasthi

Amrit Awasthi's wiki page.

Amrit Awasthi has authored 10 sequences.

A374489 a(n) = floor(Sum_{k=n^4..(n+1)^4} k^(1/4)).

Original entry on oeis.org

1, 26, 171, 628, 1685, 3726, 7231, 12776, 21033, 32770, 48851, 70236, 97981, 133238, 177255, 231376, 297041, 375786, 469243, 579140, 707301, 855646, 1026191, 1221048, 1442425, 1692626, 1974051, 2289196, 2640653, 3031110, 3463351, 3940256, 4464801, 5040058, 5669195
Offset: 0

Author

Amrit Awasthi, Jul 09 2024

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{5,-10,10,-5,1},{1,26,171,628,1685},40] (* Harvey P. Dale, Nov 07 2024 *)

Formula

a(n) = 4*n^4+8*n^3+8*n^2+5*n+1.
From Stefano Spezia, Jul 09 2024: (Start)
G.f.: (1 + 21*x + 51*x^2 + 23*x^3)/(1 - x)^5.
E.g.f.: exp(x)*(1 + 25*x + 60*x^2 + 32*x^3 + 4*x^4). (End)

A374384 a(n) = floor(Sum_{k=n^3..(n+1)^3} k^(1/3)).

Original entry on oeis.org

1, 12, 51, 134, 281, 508, 835, 1278, 1857, 2588, 3491, 4582, 5881, 7404, 9171, 11198, 13505, 16108, 19027, 22278, 25881, 29852, 34211, 38974, 44161, 49788, 55875, 62438, 69497, 77068, 85171, 93822, 103041, 112844, 123251, 134278, 145945, 158268, 171267, 184958, 199361
Offset: 0

Author

Amrit Awasthi, Jul 07 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Floor[Sum[(n^3+k)^(1/3),{k,0,3n^2+3n+1}]],{n,0,40}] (* Stefano Spezia, Jul 07 2024 *)
  • PARI
    a(n) = 3*n^3+9*n^2\2+4*n+1; \\ Michel Marcus, Jul 09 2024

Formula

a(n) = floor(3*n^3+9*n^2/2+4*n+1).
a(2*n) = 24*n^3 + 18*n^2 + 8*n + 1.
a(2*n-1) = 24*n^3-18*n^2+8*n-2 for n > 0.
a(2*n) = A248575(2*n) + 4*n + 1.
a(2*n-1) = A248575(2*n-1) + 4*n - 2.
From Stefano Spezia, Jul 09 2024: (Start)
G.f.: (1 + 9*x + 17*x^2 + 7*x^3 + 2*x^3)/((1 - x)^4*(1 + x)).
E.g.f.: exp(x)*(1 + 11*x + 14*x^2 + 3*x^3). (End)

A350855 a(0) = 1, a(n) = (n+1)*a(n-1) + (n-2).

Original entry on oeis.org

1, 1, 3, 13, 67, 405, 2839, 22717, 204459, 2044597, 22490575, 269886909, 3508529827, 49119417589, 736791263847, 11788660221565, 200407223766619, 3607330027799157, 68539270528183999, 1370785410563679997, 28786493621837279955, 633302859680420159029, 14565965772649663657687
Offset: 0

Author

Amrit Awasthi, Jan 19 2022

Keywords

Examples

			a(1) = (1+1)*a(0) + (1-2) = 2-1 = 1.
a(2) = (2+1)*a(1) + (2-2) = 3.
		

Crossrefs

Cf. A020543.

Programs

  • Mathematica
    Nest[Append[#1, (#2 + 1) #1[[-1]] + (#2 - 2)] & @@ {#, Length@ #} &, {1}, 20] (* Michael De Vlieger, Jan 19 2022 *)
    nxt[{n_,a_}]:={n+1,a(n+2)+n-1}; NestList[nxt,{0,1},30][[;;,2]] (* Harvey P. Dale, Feb 03 2025 *)
  • PARI
    a(n) = if (n, (n+1)*a(n-1) + (n-2), 1); \\ Michel Marcus, Jan 19 2022
    
  • Python
    terms = [1]
    for n in range(1, 20):
        terms.append((n+1)*terms[-1]+n-2)
    print(terms) # Gleb Ivanov, Jan 19 2022

Formula

a(n) ~ (6-2e)*(n+1)!.
E.g.f.: (exp(x)*(4*x-x^2-5)+6)/(x-1)^2. - Alois P. Heinz, Jan 19 2022

A345471 a(0) = a(1) = 1, a(n) is the smallest positive integer m >= a(n-1) + a(n-2) such that gcd(a(k),m) = 1 for all 1 < k <= n - 1.

Original entry on oeis.org

1, 1, 2, 3, 5, 11, 17, 29, 47, 79, 127, 211, 343, 557, 907, 1469, 2377, 3847, 6229, 10079, 16319, 26399, 42719, 69119, 111841, 180967, 292811, 473779, 766607, 1240387, 2006999, 3247393, 5254397, 8501791, 13756189, 22258001, 36014191, 58272197, 94286389, 152558587
Offset: 0

Author

Amrit Awasthi, Jun 20 2021

Keywords

Comments

First differs from A073021 at a(12).

Examples

			a(5) = 11 because 11 is the smallest number greater than or equal to a(3) + a(4) = 5 + 3 = 8 which is coprime to all previous terms of the sequence.
		

Crossrefs

Programs

  • Mathematica
    a[0] = a[1] = 1; a[n_] := a[n] = Module[{k = a[n - 1] + a[n - 2]}, While[! AllTrue[Range[2, n - 1], CoprimeQ[a[#], k] &], k++]; k]; Array[a, 40, 0] (* Amiram Eldar, Jun 20 2021 *)

A345020 a(0) = a(1) = 1, a(n) = largest natural number m <= a(n-1) + a(n-2) where gcd(m,a(k)) = 1 for all 1 < k <= n-1.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 17, 23, 37, 59, 89, 139, 227, 361, 587, 947, 1531, 2477, 4007, 6481, 10487, 16963, 27449, 44393, 71837, 116227, 188063, 304289, 492343, 796627, 1288967, 2085593, 3374557, 5460139, 8834689, 14294827, 23129507, 37424333, 60553837, 97978169
Offset: 0

Author

Amrit Awasthi, Jun 05 2021

Keywords

Comments

First differs from A055500 at a(14).

Examples

			a(5) = 7 because 7 is the largest number less than or equal to a(4) + a(3) = 8 which is coprime to all the previous terms of sequence.
		

Crossrefs

Cf. A055500.

Programs

  • Maple
    A[0]:= 1:
    A[1]:= 1: P:= 1:
    for n from 2 to 100 do
      for k from A[n-2]+A[n-1] by -1 do
        if igcd(k,P) = 1 then break fi
      od;
      A[n]:= k;
      P:= P*k;
    od:
    convert(A,list); # Robert Israel, Oct 23 2024
  • Mathematica
    a[0] = a[1] = 1; a[n_] := a[n] = Module[{k = a[n - 1] + a[n - 2]}, While[! AllTrue[Range[2, n - 2], CoprimeQ[a[#], k] &], k--]; k]; Array[a, 50, 0] (* Amiram Eldar, Jun 05 2021 *)

A344496 a(0)=0; for n > 0, a(n) = a(n-1)*n + n if n is odd, (a(n-1) + n)*n otherwise.

Original entry on oeis.org

0, 1, 6, 21, 100, 505, 3066, 21469, 171816, 1546353, 15463630, 170099941, 2041199436, 26535592681, 371498297730, 5572474465965, 89159591455696, 1515713054746849, 27282834985443606, 518373864723428533, 10367477294468571060, 217717023183839992281, 4789774510044479830666
Offset: 0

Author

Amrit Awasthi, May 21 2021

Keywords

Examples

			a(0) = 0;
a(1) =  a(0)*1 + 1 =   0 + 1    =   1;
a(2) = (a(1)+2)* 2 =  (1 + 2)*2 =   6;
a(3) =  a(2)*3 + 3 = 6*3 + 3    =  21;
a(4) = (a(3)+4)* 4 = (21 + 4)*4 = 100.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) a(n):= n*a(n-1) + n^(2-(n mod 2)) end: a(0):= 0:
    seq(a(n), n=0..22);  # Alois P. Heinz, May 21 2021
  • Mathematica
    a[0] = 0; a[n_] := a[n] = n * (a[n - 1] + If[OddQ[n], 1, n]); Array[a, 30, 0] (* Amiram Eldar, May 21 2021 *)
    Table[n*(-1 + 3*E*Gamma[n,1] + (n-1)*Subfactorial[n-2])/2, {n, 0, 30}] (* Vaclav Kotesovec, Jun 05 2021 *)

Formula

a(n) ~ n! * (3*exp(1)/2 + exp(-1)/2). - Vaclav Kotesovec, Jun 05 2021

A344935 a(0)=1; for n > 0, a(n) = n*(a(n-1) + i^(n-1)) if n is odd, n*a(n-1) + i^n otherwise, where i = sqrt(-1).

Original entry on oeis.org

1, 2, 3, 6, 25, 130, 779, 5446, 43569, 392130, 3921299, 43134278, 517611337, 6728947394, 94205263515, 1413078952710, 22609263243361, 384357475137154, 6918434552468771, 131450256496906630, 2629005129938132601, 55209107728700784642, 1214600370031417262123
Offset: 0

Author

Amrit Awasthi, Jun 03 2021

Keywords

Examples

			a(0) = 1;
a(1) = 1*(a(0) + i^(1-1)) =  2;
a(2) = 2*a(1)  + i^2      =  3;
a(3) = 3*(a(2) + i^2)     =  6;
a(4) = 4*a(3)  + i^4      = 25.
		

Crossrefs

Programs

  • Maple
    A344935 := proc(n)
        option remember ;
        if n = 0 then
            1;
        elif type(n,'odd') then
            n*(procname(n-1)+I^(n-1)) ;
        else
            n*procname(n-1)+I^n ;
        end if;
        simplify(%) ;
    end proc:
    seq(A344935(n),n=0..40) ; # R. J. Mathar, Aug 19 2022
  • Mathematica
    a[0] = 1; a[n_] := a[n] = If[OddQ[n], n*(a[n - 1] + I^(n - 1)), n*a[n - 1] + I^n]; Array[a, 30, 0] (* Amiram Eldar, Jun 03 2021 *)
  • PARI
    a(n) = if (n==0, 1, if (n%2, n*(a(n-1) + I^(n-1)), n*a(n-1) + I^n)); \\ Michel Marcus, Jun 05 2021

Formula

E.g.f.: (1+x)*cos(x)/(1-x).
Lim_{n->infinity} a(n)/n! = 2*cos(1) = 2*A049470.
D-finite with recurrence a(n) -n*a(n-1) +2*a(n-2) +2*(-n+2)*a(n-3) +a(n-4) +(-n+4)*a(n-5)=0. - R. J. Mathar, Aug 19 2022

A344495 a(0)=1; for n>0 a(n)=(a(n-1) + n) * n if n is odd, a(n-1)*n + n otherwise.

Original entry on oeis.org

1, 2, 6, 27, 112, 585, 3516, 24661, 197296, 1775745, 17757460, 195332181, 2343986184, 30471820561, 426605487868, 6399082318245, 102385317091936, 1740550390563201, 31329907030137636, 595268233572615445, 11905364671452308920, 250012658100498487761, 5500278478210966730764
Offset: 0

Author

Amrit Awasthi, May 21 2021

Keywords

Examples

			a(0) = 1;
a(1) = (a(0)+1)*1 = (1+1)*1 = 2 ;
a(2) = a(1)*2+2 = (2*2)+2 = 6 ;
a(3) = (a(2)+3)*3 = (6+3)*3 = 9 ;
		

Crossrefs

Cf. A344262.

Programs

  • Maple
    a:= proc(n) a(n):= n*a(n-1) + n^(1+(n mod 2)) end: a(0):= 1:
    seq(a(n), n=0..22);  # Alois P. Heinz, May 21 2021
  • Mathematica
    a[0] = 1; a[n_] := a[n] = n*(a[n - 1] + If[OddQ[n], n, 1]); Array[a, 30, 0] (* Amiram Eldar, May 21 2021 *)

Formula

a(n) ~ n! * (1 + 3*exp(1)/2 - exp(-1)/2). - Vaclav Kotesovec, Jun 05 2021

A344262 a(0)=1; for n>0, a(n) = a(n-1)*n+1 if n is even, (a(n-1)+1)*n otherwise.

Original entry on oeis.org

1, 2, 5, 18, 73, 370, 2221, 15554, 124433, 1119906, 11199061, 123189682, 1478276185, 19217590418, 269046265853, 4035693987810, 64571103804961, 1097708764684354, 19758757764318373, 375416397522049106, 7508327950440982121, 157674886959260624562
Offset: 0

Author

Amrit Awasthi, May 13 2021

Keywords

Examples

			a(0) = 1;
a(1) = (a(0)+1)*1 =  (1+1)*1 =   2;
a(2) = (a(1)*2)+1 =  (2*2)+1 =   5;
a(3) = (a(2)+1)*3 =  (5+1)*3 =  18;
a(4) = (a(3)*4)+1 = (18*4)+1 =  73;
a(5) = (a(4)+1)*5 = (73+1)*5 = 370.
		

Programs

  • Maple
    a:= proc(n) a(n):= n*a(n-1) + n^(n mod 2) end: a(0):= 1:
    seq(a(n), n=0..22);  # Alois P. Heinz, May 14 2021
  • Mathematica
    a[1] = 1; a[n_] := a[n] = If[OddQ[n], (n - 1)*a[n - 1] + 1, (n - 1)*(a[n - 1] + 1)]; Array[a, 25] (* Amiram Eldar, May 13 2021 *)

Formula

E.g.f.: (x+1)*cosh(x)/(1-x). - Alois P. Heinz, May 14 2021
Lim_{n->infinity} a(n)/n! = 2*cosh(1) = A137204 = 2*A073743. - Amrit Awasthi, May 15 2021
a(n) = A344317(n) - A155521(n-1) for n > 0. - Alois P. Heinz, May 18 2021

A343010 Integers k for which there exist three consecutive Fibonacci numbers a, b, and c such that a*b*c = k*(a+b+c).

Original entry on oeis.org

0, 1, 3, 20, 52, 357, 935, 6408, 16776, 114985, 301035, 2063324, 5401852, 37024845, 96932303, 664383888, 1739379600, 11921885137, 31211900499, 213929548580, 560074829380, 3838809989301, 10050135028343, 68884650258840, 180342355680792, 1236084894669817
Offset: 1

Author

Amrit Awasthi, Apr 02 2021

Keywords

Comments

F(n-1)*F(n)*F(n+1) = k(n)*(F(n-1)+F(n)+F(n+1)). This implies that k(n)=(F(n-1)*F(n))/2. Now k(n) will be an integer only when n is of the form 3*m or 3*m+1. Therefore we get k = (F(3*m+-1)*F(3*m))/2.

Examples

			0 is a term because F(0)*F(1)*F(2)/(F(0)+F(1)+F(2)) is 0*1*1/(0+1+1) = 0.
1 is a term because F(2)*F(3)*F(4)/(F(2)+F(3)+F(4)) is 1*2*3/(1+2+3) = 1.
3 is a term because F(3)*F(4)*F(5)/(F(3)+F(4)+F(5)) is 2*3*5/(2+3+5) = 3.
		

Crossrefs

Cf. A000045 (Fibonacci numbers), 1/2 times the even terms of sequence A001654.
Cf. A065563 (F(n-1)*F(n)*F(n+1)), A078642 (F(n-1)+F(n)+F(n+1)).

Programs

  • Maple
    F:= n-> (<<0|1>, <1|1>>^n)[1, 2]:
    a:= n-> (k-> mul(F(k+j), j=0..2)/add(F(k+j), j=0..2))(floor(3*n/2)-1):
    seq(a(n), n=1..30);  # Alois P. Heinz, Apr 02 2021
  • Mathematica
    Select[Table[(Fibonacci[k-1]*Fibonacci[k]*Fibonacci[k+1])/(Fibonacci[k-1]+Fibonacci[k]+Fibonacci[k+1]),{k,37}],IntegerQ] (* or *)
    b[k_]:=Fibonacci[3k-1]*Fibonacci[3k]/2; c[k_]:=Fibonacci[3k+1]*Fibonacci[3k]/2; Union[Table[b[k],{k,0,12}],Table[c[k],{k,0,12}]] (* Stefano Spezia, Apr 03 2021 *)
  • PARI
    r(m)={fibonacci(m)*fibonacci(m-1)*fibonacci(m+1)/(fibonacci(m)+fibonacci(m-1)+fibonacci(m+1))}
    { for(m=2, 30, my(t=r(m)); if(!frac(t), print1(t, ", ")))} \\ Andrew Howroyd, Apr 02 2021

Formula

Union of the two sequences b(k) and c(k) defined respectively as F(3*k-1)*F(3*k)/2 and F(3*k+1)*F(3*k)/2.
G.f.: x^2*(1 + 3*x + 3*x^2 + x^3)/(1 - 17*x^2 - 17*x^4 + x^6). - Stefano Spezia, Apr 03 2021