A002383 Primes of form k^2 + k + 1.
3, 7, 13, 31, 43, 73, 157, 211, 241, 307, 421, 463, 601, 757, 1123, 1483, 1723, 2551, 2971, 3307, 3541, 3907, 4423, 4831, 5113, 5701, 6007, 6163, 6481, 8011, 8191, 9901, 10303, 11131, 12211, 12433, 13807, 14281, 17293, 19183, 20023, 20593, 21757, 22651, 23563
Offset: 1
References
- D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 46.
- L. Poletti, Le serie dei numeri primi appartenente alle due forme quadratiche (A) n^2+n+1 e (B) n^2+n-1 per l'intervallo compreso entro 121 milioni, e cioè per tutti i valori di n fino a 11000, Atti della Reale Accademia Nazionale dei Lincei, Memorie della Classe di Scienze Fisiche, Matematiche e Naturali, s. 6, v. 3 (1929), pages 193-218.
- H. E. Rose, A Course in Number Theory, Clarendon Press, 1988, p. 217.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Zak Seidov, Table of n, a(n) for n = 1..10751
- Cody S. Hansen and Pace P. Nielsen, Prime factors of phi3(x) of the same form, arXiv:2204.08971 [math.NT], 2022.
- Bernard Schott, Les nombres brésiliens, Quadrature, no. 76, avril-juin 2010, pages 30-38; included here with permission from the editors of Quadrature.
Crossrefs
Programs
-
Magma
[ a: n in [1..100] | IsPrime(a) where a is n^2+n+1 ]; // Wesley Ivan Hurt, Jun 16 2014
-
Maple
select(isprime, [j^2+j+1$j=1..200])[]; # Alois P. Heinz, Apr 20 2022
-
Mathematica
Select[Table[n^2+n+1, {n,250}], PrimeQ] (* Harvey P. Dale, Mar 23 2012 *)
-
PARI
list(lim)=select(n->isprime(n),vector((sqrt(4*lim-3)-1)\2,k,k^2+k+1)) \\ Charles R Greathouse IV, Jul 25 2011
-
Python
from sympy import isprime print(list(filter(isprime, (n**2 + n + 1 for n in range(150))))) # Michael S. Branicky, Apr 20 2022
Formula
a(n) = A002384(n)^2 + A002384(n) + 1 = (A088503(n-1)^2 + 3)/4 = (A110284(n) + 3)/4. - Ray Chandler, Sep 07 2005
Extensions
Extended by Ray Chandler, Sep 07 2005
Comments