cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A096172 Largest prime factor of n^4 + 1.

Original entry on oeis.org

2, 17, 41, 257, 313, 1297, 1201, 241, 193, 137, 7321, 233, 14281, 937, 1489, 65537, 41761, 929, 3833, 160001, 97241, 3209, 139921, 331777, 11489, 26881, 6481, 614657, 353641, 3361, 1129, 61681, 6113, 1336337, 750313, 98801, 10529, 50857, 1156721
Offset: 1

Views

Author

Hugo Pfoertner, Jun 19 2004

Keywords

Comments

Mabkhout shows that a(n) >= 137 for n > 3. - Charles R Greathouse IV, Apr 07 2014

Examples

			a(1)=2 because 1^4 + 1 = 2;
a(2)=17: 2^4 + 1 = 17;
a(8)=241: 8^4 + 1 = 4097 = 17*241.
		

References

  • Mustapha Mabkhout, Minoration de P(x^4+1), Rendiconti del Seminario della Facoltà di Scienze dell'Università di Cagliari 63:2 (1993), pp. 135-148.

Crossrefs

Programs

Formula

a(n) = A006530(1+n^4) = A014442(n^2). - R. J. Mathar, Jan 28 2017
From Amiram Eldar, Oct 28 2024: (Start)
a(n) > 113 for n > 3 (Mureddu, 1986-1987).
a(n) >= 233 for n >= 11 (Luca, 2004). (End)

A176116 Primes p such that p^4+1 = 2q where q is prime.

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 23, 29, 61, 71, 73, 103, 113, 199, 251, 313, 317, 337, 353, 419, 431, 449, 463, 479, 487, 503, 523, 607, 613, 643, 677, 701, 719, 761, 769, 811, 821, 829, 857, 883, 919, 997, 1013, 1019, 1049, 1087, 1123, 1163, 1259, 1327, 1381, 1483, 1493
Offset: 1

Views

Author

Kevin Batista (kevin762401(AT)yahoo.com), Apr 08 2010

Keywords

Examples

			3^4+1 = 2*41; 5^4+1 = 2*313; 7^4+1 = 2*1201; 11^4+1 = 2*7321.
		

Crossrefs

Subsequence of A096169.
Cf. A277201 (resulting primes).

Programs

  • Mathematica
    Select[Prime[Range[250]],PrimeQ[(#^4+1)/2]&] (* Harvey P. Dale, Jul 20 2012 *)
  • PARI
    lista(nn) = forprime(p=3, nn, if (isprime((p^4+1)/2), print1(p, ", "));); \\ Michel Marcus, Oct 03 2016

Extensions

Edited by Ray Chandler, Apr 10 2010

A096171 Numbers k such that k^4+1 is an odd semiprime.

Original entry on oeis.org

8, 10, 12, 14, 18, 22, 26, 30, 32, 36, 38, 40, 42, 50, 52, 58, 62, 68, 72, 78, 84, 86, 92, 94, 98, 100, 102, 108, 112, 114, 116, 120, 122, 124, 128, 130, 138, 146, 148, 152, 158, 162, 166, 170, 172, 176, 184, 186, 200, 212, 214, 216, 218, 222, 224, 226, 234, 250, 252
Offset: 1

Views

Author

Hugo Pfoertner, Jun 19 2004

Keywords

Examples

			a(1)=8 because 8^4 + 1 = 4097 = 17*241;
a(2)=10: 10^4 + 1 = 10001 = 73*137.
		

Crossrefs

Cf. A000068 (n^4+1 is prime), A037896 (primes of the form k^4+1), A096169 ((n^4+1)/2 is prime), A069170 (primes of the form (k^4+1)/2), A096172 (largest prime factor of n^4+1), A046388.

Programs

  • Mathematica
    Select[Range[2,300,2],PrimeOmega[#^4+1]==2&] (* Harvey P. Dale, Dec 25 2021 *)
  • PARI
    isA096171(n) = {local(m);m=n^4+1;(m%2==1)&&(bigomega(m)==2)} \\ Michael B. Porter, Feb 02 2010

A096170 Primes of the form (k^4 + 1)/2.

Original entry on oeis.org

41, 313, 1201, 7321, 14281, 41761, 97241, 139921, 353641, 750313, 1156721, 5278001, 6922921, 8925313, 12705841, 14199121, 21523361, 56275441, 60775313, 81523681, 87450313, 100266961, 138461441, 273990641, 370600313, 407865361
Offset: 1

Views

Author

Hugo Pfoertner, Jun 19 2004

Keywords

Comments

Note that k must be odd. Terms of primitive Pythagorean triples: (k^2, (k^4-1)/2, (k^4+1)/2).

Examples

			a(1)=41 because (3^4 + 1)/2 = 82/2 = 41 is prime.
		

Crossrefs

Cf. A096169 (n^4+1)/2 is prime, A000068 n^4+1 is prime, A037896 primes of the form n^4+1, A096171 n^4+1 is an odd semiprime, A096172 largest prime factor of n^4+1.

Programs

  • Magma
    [ a: n in [0..2500] | IsPrime(a) where a is ((n^4+1) div 2) ]; // Vincenzo Librandi, Apr 15 2011
    
  • Mathematica
    Select[(Range[200]^4+1)/2,PrimeQ] (* Harvey P. Dale, Mar 09 2013 *)
  • PARI
    list(lim)=my(v=List(),t); forstep(n=3,sqrtnint(lim\1*2-1,4),2, if(isprime(t=(n^4+1)/2), listput(v,t))); Vec(v) \\ Charles R Greathouse IV, Feb 14 2017

Extensions

Name edited by Zak Seidov, Apr 14 2011

A277201 Primes of the form (p^4 + 1)/2, where p is prime.

Original entry on oeis.org

41, 313, 1201, 7321, 14281, 41761, 139921, 353641, 6922921, 12705841, 14199121, 56275441, 81523681, 784119601, 1984563001, 4798962481, 5049019561, 6448958881, 7763701441, 15410832361, 17253574561, 20321481601, 22977034081, 26321586241
Offset: 1

Views

Author

Lechoslaw Ratajczak, Oct 04 2016

Keywords

Comments

The sequence is a subsequence of A096170.
Conjecture: the sequence consists of the numbers k such that tau(2k) = 4 and tau(2k-1) = 5. tau(82) = 4 and tau(81) = 5, 82/2 = 41 = a(1). tau(626) = 4 and tau(625) = 5, 626/2 = 313 = a(2). tau(2402) = 4 and tau(2401) = 5, 2402/2 = 1201 = a(3). The conjecture was checked for 10^9 consecutive integers.
The above conjecture is true: since tau(2k-1) = 5, 2k-1 must be the 4th power of some prime p, i.e., k = (p^4 + 1)/2 (so p is odd, so p^4 == 1 (mod 16), so k is odd), and since tau(2k) = 4, 2k must be the product of two distinct primes, so k is an odd prime. Thus, the set of numbers k such that tau(2k) = 4 and tau(2k-1) = 5 is the set of primes of the form (p^4 + 1)/2, where p is prime. - Jon E. Schoenfield, Mar 17 2019
Primes of the form a^2 + b^2 such that a^2 - b^2 = p^2, where p is prime. - Thomas Ordowski, Feb 14 2017

Examples

			a(1) = 41 because 3 is prime and (3^4 + 1)/2 = 41 is prime.
a(2) = 313 because 5 is prime and (5^4 + 1)/2 = 313 is prime.
a(3) = 1201 because 7 is prime and (7^4 + 1)/2 = 1201 is prime.
		

Crossrefs

Programs

  • Magma
    [a: p in PrimesUpTo(1000) | IsPrime(a) where a is (p^4+1) div 2 ]; // Vincenzo Librandi, Nov 07 2016
  • Mathematica
    Select[Map[(#^4 + 1)/2 &, Prime@ Range@ 100], PrimeQ] (* Michael De Vlieger, Oct 04 2016 *)
    Select[Table[(p^4+1)/2,{p,Prime[Range[100]]}],PrimeQ] (* Harvey P. Dale, Dec 21 2018 *)
  • Maxima
    makelist(if primep(k)=true then ((k^4)+1)/2 else 0,k,3,500,1)$ sublist(%,primep);
    
  • PARI
    lista(nn) = {forprime(p=3, nn, if (isprime(q=(p^4+1)/2), print1(q, ", ")););} \\ Michel Marcus, Oct 04 2016
    

Formula

a(n) = (A176116(n)^4 + 1)/2.
Showing 1-5 of 5 results.