cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A176116 Primes p such that p^4+1 = 2q where q is prime.

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 23, 29, 61, 71, 73, 103, 113, 199, 251, 313, 317, 337, 353, 419, 431, 449, 463, 479, 487, 503, 523, 607, 613, 643, 677, 701, 719, 761, 769, 811, 821, 829, 857, 883, 919, 997, 1013, 1019, 1049, 1087, 1123, 1163, 1259, 1327, 1381, 1483, 1493
Offset: 1

Views

Author

Kevin Batista (kevin762401(AT)yahoo.com), Apr 08 2010

Keywords

Examples

			3^4+1 = 2*41; 5^4+1 = 2*313; 7^4+1 = 2*1201; 11^4+1 = 2*7321.
		

Crossrefs

Subsequence of A096169.
Cf. A277201 (resulting primes).

Programs

  • Mathematica
    Select[Prime[Range[250]],PrimeQ[(#^4+1)/2]&] (* Harvey P. Dale, Jul 20 2012 *)
  • PARI
    lista(nn) = forprime(p=3, nn, if (isprime((p^4+1)/2), print1(p, ", "));); \\ Michel Marcus, Oct 03 2016

Extensions

Edited by Ray Chandler, Apr 10 2010

A382872 For n >= 1, a(n) is the number of divisors of the Pillai's arithmetical function: Sum_{k=1..n} gcd(k, n) (A018804).

Original entry on oeis.org

1, 2, 2, 4, 3, 4, 2, 6, 4, 4, 4, 8, 3, 4, 6, 10, 4, 6, 2, 12, 4, 6, 6, 9, 4, 6, 5, 8, 4, 8, 2, 10, 8, 6, 6, 16, 2, 4, 4, 18, 5, 8, 4, 16, 8, 8, 4, 20, 4, 8, 8, 12, 8, 6, 8, 12, 4, 6, 6, 24, 3, 4, 8, 9, 9, 12, 4, 16, 9, 8, 4, 24, 4, 4, 6, 8, 8, 8, 2, 20
Offset: 1

Views

Author

Ctibor O. Zizka, Apr 07 2025

Keywords

Comments

a(n) is from A005408 for n from {1, 5, 13, 24, 27, 41, 61, 64, 65, 69, 99, 113, ...}.
a(n) is from A065091 for n from {5, 13, 27, 41, 61, 135, 181, 205, 313, 421, ...}.

Examples

			For n = 5, a(5) = A000005(A018804(5)) = A000005(9) = 3.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local i; numtheory:-tau(add(igcd(i,n),i=1..n)) end proc:
    map(f, [$1..100]); # Robert Israel, May 07 2025
  • Mathematica
    f[p_, e_] := (e*(p - 1)/p + 1)*p^e; a[n_] := DivisorSigma[0, Times @@ f @@@ FactorInteger[n]]; Array[a, 100] (* Amiram Eldar, Apr 07 2025 *)
  • PARI
    a(n) = numdiv(sumdiv(n, d, n*eulerphi(d)/d)); \\ Michel Marcus, Apr 07 2025

Formula

a(n) = A000005(A018804(n)).
a(A005382(n)) = 2.
a(A067756(n)) = 3.
a(A277201(n)) = 5.
Showing 1-2 of 2 results.