cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A096172 Largest prime factor of n^4 + 1.

Original entry on oeis.org

2, 17, 41, 257, 313, 1297, 1201, 241, 193, 137, 7321, 233, 14281, 937, 1489, 65537, 41761, 929, 3833, 160001, 97241, 3209, 139921, 331777, 11489, 26881, 6481, 614657, 353641, 3361, 1129, 61681, 6113, 1336337, 750313, 98801, 10529, 50857, 1156721
Offset: 1

Views

Author

Hugo Pfoertner, Jun 19 2004

Keywords

Comments

Mabkhout shows that a(n) >= 137 for n > 3. - Charles R Greathouse IV, Apr 07 2014

Examples

			a(1)=2 because 1^4 + 1 = 2;
a(2)=17: 2^4 + 1 = 17;
a(8)=241: 8^4 + 1 = 4097 = 17*241.
		

References

  • Mustapha Mabkhout, Minoration de P(x^4+1), Rendiconti del Seminario della Facoltà di Scienze dell'Università di Cagliari 63:2 (1993), pp. 135-148.

Crossrefs

Programs

Formula

a(n) = A006530(1+n^4) = A014442(n^2). - R. J. Mathar, Jan 28 2017
From Amiram Eldar, Oct 28 2024: (Start)
a(n) > 113 for n > 3 (Mureddu, 1986-1987).
a(n) >= 233 for n >= 11 (Luca, 2004). (End)

A096169 Odd n such that (n^4+1)/2 is prime.

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 21, 23, 29, 35, 39, 57, 61, 65, 71, 73, 81, 103, 105, 113, 115, 119, 129, 153, 165, 169, 171, 199, 203, 205, 251, 259, 267, 275, 309, 313, 317, 333, 337, 339, 353, 363, 403, 405, 415, 419, 431, 445, 449, 453, 455, 463, 471, 477, 479, 487
Offset: 1

Views

Author

Hugo Pfoertner, Jun 19 2004

Keywords

Examples

			a(1)=3 because (3^4+1)/2=82/2=41 is prime.
		

Crossrefs

Cf. A000068 n^4+1 is prime, A037896 primes of the form n^4+1, A096170 primes of the form (n^4+1)/2, A096171 n^4+1 is an odd semiprime, A096172 largest prime factor of n^4+1.

Programs

  • Magma
    [ n: n in [0..2500] | IsPrime((n^4+1) div 2) ]; // Vincenzo Librandi, Apr 15 2011
  • Mathematica
    Select[Range[1,501,2],PrimeQ[(#^4+1)/2]&] (* Harvey P. Dale, Jun 04 2011 *)

A096170 Primes of the form (k^4 + 1)/2.

Original entry on oeis.org

41, 313, 1201, 7321, 14281, 41761, 97241, 139921, 353641, 750313, 1156721, 5278001, 6922921, 8925313, 12705841, 14199121, 21523361, 56275441, 60775313, 81523681, 87450313, 100266961, 138461441, 273990641, 370600313, 407865361
Offset: 1

Views

Author

Hugo Pfoertner, Jun 19 2004

Keywords

Comments

Note that k must be odd. Terms of primitive Pythagorean triples: (k^2, (k^4-1)/2, (k^4+1)/2).

Examples

			a(1)=41 because (3^4 + 1)/2 = 82/2 = 41 is prime.
		

Crossrefs

Cf. A096169 (n^4+1)/2 is prime, A000068 n^4+1 is prime, A037896 primes of the form n^4+1, A096171 n^4+1 is an odd semiprime, A096172 largest prime factor of n^4+1.

Programs

  • Magma
    [ a: n in [0..2500] | IsPrime(a) where a is ((n^4+1) div 2) ]; // Vincenzo Librandi, Apr 15 2011
    
  • Mathematica
    Select[(Range[200]^4+1)/2,PrimeQ] (* Harvey P. Dale, Mar 09 2013 *)
  • PARI
    list(lim)=my(v=List(),t); forstep(n=3,sqrtnint(lim\1*2-1,4),2, if(isprime(t=(n^4+1)/2), listput(v,t))); Vec(v) \\ Charles R Greathouse IV, Feb 14 2017

Extensions

Name edited by Zak Seidov, Apr 14 2011

A256145 Primitive prime factors of the cyclotomic polynomial sequence Phi(8,k) in the order in which they occur.

Original entry on oeis.org

2, 17, 41, 257, 313, 1297, 1201, 241, 193, 73, 137, 7321, 89, 233, 14281, 937, 1489, 65537, 41761, 113, 929, 3833, 160001, 97241, 3209, 139921, 331777, 11489, 26881, 6481, 614657, 353641, 3361, 409, 1129, 61681, 97, 6113, 1336337, 750313, 98801, 10529, 50857
Offset: 1

Views

Author

Robert Price, Mar 16 2015

Keywords

Comments

Phi(8,k) = k^4 + 1.

Crossrefs

Programs

  • Mathematica
    prim = {}; Do[prim = Join[prim, Complement[First /@ FactorInteger[Cyclotomic[8, k]], prim]], {k, 1000}]; prim
  • PARI
    lista(nn) = {vs = []; for (n=1, nn, vp = factor(polcyclo(8,n))[,1]; for (i=1, #vp, if (!vecsearch(vs, vp[i]), print1(vp[i], ", "); vs = vecsort(concat(vs, vp[i]),,8););););} \\ Michel Marcus, Mar 20 2015
Showing 1-4 of 4 results.