cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 32 results. Next

A000068 Numbers k such that k^4 + 1 is prime.

Original entry on oeis.org

1, 2, 4, 6, 16, 20, 24, 28, 34, 46, 48, 54, 56, 74, 80, 82, 88, 90, 106, 118, 132, 140, 142, 154, 160, 164, 174, 180, 194, 198, 204, 210, 220, 228, 238, 242, 248, 254, 266, 272, 276, 278, 288, 296, 312, 320, 328, 334, 340, 352, 364, 374, 414, 430, 436, 442, 466
Offset: 1

Views

Author

Keywords

References

  • Harvey Dubner, Generalized Fermat primes, J. Recreational Math., 18 (1985): 279-280.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [n: n in [0..800] | IsPrime(n^4+1)]; // Vincenzo Librandi, Nov 18 2010
  • Mathematica
    Select[Range[10^2*2], PrimeQ[ #^4+1] &] (* Vladimir Joseph Stephan Orlovsky, May 01 2008 *)
  • PARI
    {a(n) = local(m); if( n<1, 0, for(k=1, n, until( isprime(m^4 + 1), m++)); m)};
    
  • PARI
    list(lim)=my(v=List([1])); forstep(k=2,lim,2, if(isprime(k^4+1), listput(v,k))); Vec(v) \\ Charles R Greathouse IV, Mar 31 2022
    

Formula

1+a(n)^4 = A037896(n).

A078164 Numbers k such that phi(k) is a perfect biquadrate.

Original entry on oeis.org

1, 2, 17, 32, 34, 40, 48, 60, 257, 512, 514, 544, 640, 680, 768, 816, 960, 1020, 1297, 1387, 1417, 1729, 1971, 2109, 2223, 2289, 2331, 2445, 2457, 2565, 2594, 2608, 2774, 2812, 2834, 2835, 3052, 3260, 3458, 3888, 3912, 3924, 3942, 3996, 4104, 4212, 4218
Offset: 1

Views

Author

Labos Elemer, Nov 27 2002

Keywords

Comments

Corresponding values of phi include 1, 16, 256, 1296, 4096, ... and these arise several times each.
a(3) = A053576(4).
A013776 is a subsequence since phi(2^(4*n+1)) = (2^n)^4. - Bernard Schott, Sep 22 2022
Subsequence of primes is A037896 since in this case: phi(k^4+1) = k^4. - Bernard Schott, Mar 05 2023

Crossrefs

Subsequence of A039770. A037896 is a subsequence.
Sequences where phi(k) is a perfect power: A039770 (square), A039771 (cube), this sequence (4th), A078165 (5th), A078166 (6th), A078167 (7th), A078168 (8th), A078169 (9th), A078170 (10th).

Programs

  • Mathematica
    k=4; Do[s=EulerPhi[n]^(1/k); If[IntegerQ[s], Print[n]], {n, 1, 5000}]
    Select[Range[5000],IntegerQ[Surd[EulerPhi[#],4]]&] (* Harvey P. Dale, Apr 30 2015 *)
  • PARI
    is(n)=ispower(eulerphi(n),4) \\ Charles R Greathouse IV, Apr 24 2020
    
  • Python
    from itertools import count, islice
    from sympy import totient, integer_nthroot
    def A078164_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:integer_nthroot(totient(n),4)[1], count(max(1,startvalue)))
    A078164_list = list(islice(A078164_gen(),20)) # Chai Wah Wu, Feb 28 2023

A096172 Largest prime factor of n^4 + 1.

Original entry on oeis.org

2, 17, 41, 257, 313, 1297, 1201, 241, 193, 137, 7321, 233, 14281, 937, 1489, 65537, 41761, 929, 3833, 160001, 97241, 3209, 139921, 331777, 11489, 26881, 6481, 614657, 353641, 3361, 1129, 61681, 6113, 1336337, 750313, 98801, 10529, 50857, 1156721
Offset: 1

Views

Author

Hugo Pfoertner, Jun 19 2004

Keywords

Comments

Mabkhout shows that a(n) >= 137 for n > 3. - Charles R Greathouse IV, Apr 07 2014

Examples

			a(1)=2 because 1^4 + 1 = 2;
a(2)=17: 2^4 + 1 = 17;
a(8)=241: 8^4 + 1 = 4097 = 17*241.
		

References

  • Mustapha Mabkhout, Minoration de P(x^4+1), Rendiconti del Seminario della Facoltà di Scienze dell'Università di Cagliari 63:2 (1993), pp. 135-148.

Crossrefs

Programs

Formula

a(n) = A006530(1+n^4) = A014442(n^2). - R. J. Mathar, Jan 28 2017
From Amiram Eldar, Oct 28 2024: (Start)
a(n) > 113 for n > 3 (Mureddu, 1986-1987).
a(n) >= 233 for n >= 11 (Luca, 2004). (End)

A057447 a(n+1) = next prime such that a(n+1)-1 | (a(1)...a(n))^3.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 101, 107, 109, 127, 131, 139, 149, 151, 157, 167, 173, 179, 181, 191, 197, 199, 211, 223, 229, 233, 251, 263, 269, 271, 277, 281, 283, 293, 311, 313, 317, 331, 347, 349, 359
Offset: 1

Views

Author

Robert G. Wilson v, Sep 25 2000

Keywords

Comments

No prime of the form a*b^k + 1, with a > 0, b > 1 and k > 3 (including those in A037896) belongs to the sequence. - Mauro Fiorentini, Aug 09 2023

Crossrefs

Programs

  • Mathematica
    NextPrime[ n_Integer ] := Module[ {k = n + 1}, While[ ! PrimeQ[ k ], k++ ]; Return[ k ] ]; f[ n_List ] := (a = n; b = Apply[ Times, a^3 ]; d = NextPrime[ a[[ -1 ]] ]; While[ ! IntegerQ[ b/(d - 1) ] && d < b+2, d = NextPrime[ d ] ]; AppendTo[ a, d ]; Return[ a ]); Nest[ f, {2}, 75 ]

A096169 Odd n such that (n^4+1)/2 is prime.

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 21, 23, 29, 35, 39, 57, 61, 65, 71, 73, 81, 103, 105, 113, 115, 119, 129, 153, 165, 169, 171, 199, 203, 205, 251, 259, 267, 275, 309, 313, 317, 333, 337, 339, 353, 363, 403, 405, 415, 419, 431, 445, 449, 453, 455, 463, 471, 477, 479, 487
Offset: 1

Views

Author

Hugo Pfoertner, Jun 19 2004

Keywords

Examples

			a(1)=3 because (3^4+1)/2=82/2=41 is prime.
		

Crossrefs

Cf. A000068 n^4+1 is prime, A037896 primes of the form n^4+1, A096170 primes of the form (n^4+1)/2, A096171 n^4+1 is an odd semiprime, A096172 largest prime factor of n^4+1.

Programs

  • Magma
    [ n: n in [0..2500] | IsPrime((n^4+1) div 2) ]; // Vincenzo Librandi, Apr 15 2011
  • Mathematica
    Select[Range[1,501,2],PrimeQ[(#^4+1)/2]&] (* Harvey P. Dale, Jun 04 2011 *)

A096171 Numbers k such that k^4+1 is an odd semiprime.

Original entry on oeis.org

8, 10, 12, 14, 18, 22, 26, 30, 32, 36, 38, 40, 42, 50, 52, 58, 62, 68, 72, 78, 84, 86, 92, 94, 98, 100, 102, 108, 112, 114, 116, 120, 122, 124, 128, 130, 138, 146, 148, 152, 158, 162, 166, 170, 172, 176, 184, 186, 200, 212, 214, 216, 218, 222, 224, 226, 234, 250, 252
Offset: 1

Views

Author

Hugo Pfoertner, Jun 19 2004

Keywords

Examples

			a(1)=8 because 8^4 + 1 = 4097 = 17*241;
a(2)=10: 10^4 + 1 = 10001 = 73*137.
		

Crossrefs

Cf. A000068 (n^4+1 is prime), A037896 (primes of the form k^4+1), A096169 ((n^4+1)/2 is prime), A069170 (primes of the form (k^4+1)/2), A096172 (largest prime factor of n^4+1), A046388.

Programs

  • Mathematica
    Select[Range[2,300,2],PrimeOmega[#^4+1]==2&] (* Harvey P. Dale, Dec 25 2021 *)
  • PARI
    isA096171(n) = {local(m);m=n^4+1;(m%2==1)&&(bigomega(m)==2)} \\ Michael B. Porter, Feb 02 2010

A233549 Number of ways to write n = p + q (q > 0) with p and (phi(p)*phi(q))^4 + 1 prime, where phi(.) is Euler's totient function (A000010).

Original entry on oeis.org

0, 0, 1, 2, 2, 3, 3, 2, 3, 2, 1, 3, 1, 4, 3, 3, 4, 4, 6, 1, 1, 1, 4, 1, 2, 2, 4, 4, 1, 6, 7, 3, 4, 3, 4, 3, 3, 5, 2, 3, 5, 3, 1, 3, 5, 3, 3, 5, 6, 4, 4, 5, 4, 3, 4, 6, 4, 4, 3, 4, 5, 4, 2, 2, 4, 3, 6, 1, 4, 2, 8, 9, 2, 5, 5, 4, 2, 3, 4, 3, 6, 1, 7, 5, 8, 5, 4, 4, 4, 10, 10, 6, 4, 8, 4, 3, 4, 6, 6, 2
Offset: 1

Views

Author

Zhi-Wei Sun, Dec 12 2013

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 2.
(ii) If n > 2 is not equal to 26, then there is a prime p < n with (phi(p)*phi(n-p))^2 + 1 prime.
(iii) If n > 3 is different from 9 and 16, then there is a prime p < n with ((p+1)*phi(n-p))^2 + 1 prime.
Part (i) of the conjecture implies that there are infinitely many primes of the form x^4 + 1. We have verified it for n up to 10^7.

Examples

			a(11) = 1 since 11 = 2 + 9 with 2 and (phi(2)*phi(9))^4 + 1 = 6^4 + 1 = 1297 both prime.
a(13) = 1 since 13 = 5 + 8 with 5 and (phi(5)*phi(8))^4 + 1 = 16^4 + 1 = 65537 both prime.
a(258) = 1 since 258 = 167 + 91 with 167 and (phi(167)*phi(91))^4 + 1 = (166*72)^4 + 1 = 20406209352892417 both prime.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Sum[If[PrimeQ[((Prime[k]-1)*EulerPhi[n-Prime[k]])^4+1],1,0],{k,1,PrimePi[n-1]}]
    Table[a[n],{n,1,100}]

A096170 Primes of the form (k^4 + 1)/2.

Original entry on oeis.org

41, 313, 1201, 7321, 14281, 41761, 97241, 139921, 353641, 750313, 1156721, 5278001, 6922921, 8925313, 12705841, 14199121, 21523361, 56275441, 60775313, 81523681, 87450313, 100266961, 138461441, 273990641, 370600313, 407865361
Offset: 1

Views

Author

Hugo Pfoertner, Jun 19 2004

Keywords

Comments

Note that k must be odd. Terms of primitive Pythagorean triples: (k^2, (k^4-1)/2, (k^4+1)/2).

Examples

			a(1)=41 because (3^4 + 1)/2 = 82/2 = 41 is prime.
		

Crossrefs

Cf. A096169 (n^4+1)/2 is prime, A000068 n^4+1 is prime, A037896 primes of the form n^4+1, A096171 n^4+1 is an odd semiprime, A096172 largest prime factor of n^4+1.

Programs

  • Magma
    [ a: n in [0..2500] | IsPrime(a) where a is ((n^4+1) div 2) ]; // Vincenzo Librandi, Apr 15 2011
    
  • Mathematica
    Select[(Range[200]^4+1)/2,PrimeQ] (* Harvey P. Dale, Mar 09 2013 *)
  • PARI
    list(lim)=my(v=List(),t); forstep(n=3,sqrtnint(lim\1*2-1,4),2, if(isprime(t=(n^4+1)/2), listput(v,t))); Vec(v) \\ Charles R Greathouse IV, Feb 14 2017

Extensions

Name edited by Zak Seidov, Apr 14 2011

A182343 Primes of the form k^4 + 2 for k >= 0.

Original entry on oeis.org

2, 3, 83, 6563, 50627, 194483, 4100627, 10556003, 15752963, 22667123, 57289763, 96059603, 276922883, 395254163, 6059221283, 6597500627, 12296370323, 14166950627, 42110733683, 44386483763, 46753250627, 49213429283, 69257922563, 72555348323
Offset: 1

Views

Author

Patrick Devlin, Apr 25 2012

Keywords

Comments

Apart from 3, this is a subsequence of A053786. - Bruno Berselli, Apr 26 2012

Examples

			2 = 0^4 + 2;
3 = 1^4 + 2;
83 = 3^4 + 2.
		

Crossrefs

Programs

  • Magma
    [2,3] cat [n^4+2: n in [3..600 by 6]|IsPrime(n^4+2)]; // Bruno Berselli, Apr 26 2012
  • Maple
    # choose N large, then S is the desired set
    f:=n->n^4 + 2:
    S:={}:
    for n from 0 to N do if(isprime(f(n))) then S:=S union {f(n)}: fi: od:
  • Mathematica
    Select[Range[0,600]^4 + 2,PrimeQ] (* Bruno Berselli, Apr 26 2012 *)

A188717 Primes p such that all prime factors of p-1 have exponent 4.

Original entry on oeis.org

2, 17, 1297, 1336337, 4477457, 29986577, 45212177, 126247697, 193877777, 406586897, 562448657, 916636177, 1416468497, 1944810001, 3208542737, 4162314257, 5006411537, 5972816657, 12444741137, 19565295377, 34188010001, 38167092497, 47156728337, 59553569297, 61505984017
Offset: 1

Views

Author

Keywords

Examples

			17-1 = 2^4, 1297-1 = 2^4*3^4, 1336337-1 = 2^4*17^4, 4477457-1 = 2^4*23^4, ...
		

Crossrefs

Cf. A089195 (exponent 2), A037896 (primes of the form k^4+1), A188764.

Programs

  • Mathematica
    Prepend[Select[Table[Prime[n],{n,600000}],Length[Union[Last/@FactorInteger[#-1]]]==1&&Union[Last/@FactorInteger[#-1]]=={4}&], 2]
    seq[lim_] := Select[Select[Range[Floor[Surd[lim-1, 2]]], SquareFreeQ]^4 + 1, PrimeQ]; seq[10^6] (* Amiram Eldar, Jan 18 2025 *)
  • PARI
    list(lim) = select(isprime, apply(x -> x^4 + 1, select(issquarefree, vector(sqrtnint(lim-1, 4), i, i)))); \\ Amiram Eldar, Jan 18 2025

Extensions

a(12)-a(22) from Donovan Johnson, Apr 10 2011
a(1) = 2 inserted and a(23)-a(25) added by Amiram Eldar, Jan 18 2025
Showing 1-10 of 32 results. Next