cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A002827 Unitary perfect numbers: numbers k such that usigma(k) - k = k.

Original entry on oeis.org

6, 60, 90, 87360, 146361946186458562560000
Offset: 1

Views

Author

Keywords

Comments

d is a unitary divisor of k if gcd(d,k/d)=1; usigma(k) is their sum (A034448).
The prime factors of a unitary perfect number (A002827) are the Higgs primes (A057447). - Paul Muljadi, Oct 10 2005
It is not known if a(6) exists. - N. J. A. Sloane, Jul 27 2015
Frei proved that if there is a unitary perfect number that is not divisible by 3, then it is divisible by 2^m with m >= 144, it has at least 144 distinct odd prime factors, and it is larger than 10^440. - Amiram Eldar, Mar 05 2019
Conjecture: Subsequence of A083207 (Zumkeller numbers). Verified for all present terms. - Ivan N. Ianakiev, Jan 20 2020

Examples

			Unitary divisors of 60 are 1,4,3,5,12,20,15,60, with sum 120 = 2*60.
146361946186458562560000 = 2^18 * 3 * 5^4 * 7 * 11 * 13 * 19 * 37 * 79 * 109 * 157 * 313.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, Sect. B3.
  • F. Le Lionnais, Les Nombres Remarquables. Paris: Hermann, p. 59, 1983.
  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section III.45.1.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 147-148.

Crossrefs

Subsequence of the following sequences: A003062, A290466 (seemingly), A293188, A327157, A327158.
Gives the positions of ones in A327159.

Programs

  • Mathematica
    usnQ[n_]:=Total[Select[Divisors[n],GCD[#,n/#]==1&]]==2n; Select[Range[ 90000],usnQ] (* This will generate the first four terms of the sequence; it would take a very long time to attempt to generate the fifth term. *) (* Harvey P. Dale, Nov 14 2012 *)
  • PARI
    is(n)=sumdivmult(n, d, if(gcd(d, n/d)==1, d))==2*n \\ Charles R Greathouse IV, Aug 01 2016

Formula

If m is a term and omega(m) = A001221(m) = k, then m < 2^(2^k) (Goto, 2007). - Amiram Eldar, Jun 06 2020

A007459 Higgs's primes: a(n+1) = smallest prime > a(n) such that a(n+1)-1 divides the product (a(1)...a(n))^2.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 19, 23, 29, 31, 37, 43, 47, 53, 59, 61, 67, 71, 79, 101, 107, 127, 131, 139, 149, 151, 157, 173, 181, 191, 197, 199, 211, 223, 229, 263, 269, 277, 283, 311, 317, 331, 347, 349, 367, 373, 383, 397, 419, 421, 431, 461, 463, 491, 509, 523, 547, 557, 571
Offset: 1

Views

Author

Keywords

Comments

Named after the British mathematician Denis A. Higgs (1932-2011). - Amiram Eldar, Jun 05 2021
No prime of the form a*b^k + 1 (those in A089200) with a > 0, b > 1 and k > 2 is a Higgs's prime. - Mauro Fiorentini, Aug 08 2023

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a007459 n = a007459_list !! (n-1)
    a007459_list = f 1 a000040_list where
      f q (p:ps) = if mod q (p - 1) == 0 then p : f (q * p ^ 2) ps else f q ps
    -- Reinhard Zumkeller, Apr 14 2013
    
  • Maple
    a:=[2]; P:=1; j:=1;
    for n from 2 to 32 do
    P:=P*a[n-1]^2;
      for i from j+1 to 250 do
      if (P mod (ithprime(i)-1)) = 0 then
      a:=[op(a),ithprime(i)]; j:=i; break; fi;
    od:
    od:
    a; # N. J. A. Sloane, Feb 12 2017
  • Mathematica
    f[ n_List ] := (a = n; b = Apply[ Times, a^2 ]; d = NextPrime[ a[ [ -1 ] ] ]; While[ ! IntegerQ[ b/(d - 1) ] || d > b, d = NextPrime[ d ] ]; AppendTo[ a, d ]; Return[ a ]); Nest[ f, {2}, 75 ]
    nxt[{p_,a_}]:=Module[{np=NextPrime[a]},While[PowerMod[p,2,np-1] != 0,np = NextPrime[np]];{p*np,np}]; NestList[nxt,{2,2},60][[All,2]] (* Harvey P. Dale, Jul 09 2021 *)
  • PARI
    step(v)=my(N=vecprod(v)^2);forprime(p=v[#v]+1,,if(N%(p-1)==0,return(concat(v,p))))
    first(n)=my(v=[2]);for(i=2,n,v=step(v));v \\ Charles R Greathouse IV, Jun 11 2015

Extensions

More terms from David W. Wilson
Definition clarified by N. J. A. Sloane, Feb 12 2017

A095074 Primes in whose binary expansion the number of 0-bits is less than or equal to number of 1-bits.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 71, 79, 83, 89, 101, 103, 107, 109, 113, 127, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 271, 283, 307, 311, 313, 317, 331, 347, 349, 359
Offset: 1

Views

Author

Antti Karttunen, Jun 01 2004

Keywords

Examples

			From _Indranil Ghosh_, Feb 03 2017: (Start)
29 is in the sequence because 29_10 = 11101_2. '11101' has one 0 and three 1's.
37 is in the sequence because 37_10 = 100101_2. '100101' has three 1's and 3 0's. (End)
		

Crossrefs

Complement of A095071 in A000040. Differs from A057447 first time at n=18, where a(n)=71, while A057447(18)=67. Cf. A095054.

Programs

  • Mathematica
    Select[Prime[Range[50]], DigitCount[#, 2, 0] <= DigitCount[#, 2, 1] &] (* Alonso del Arte, Jan 11 2011 *)
  • PARI
    forprime(p=2,359,v=binary(p);s=0;for(k=1,#v,s+=if(v[k]==0,+1,-1));if(s<=0,print1(p,", "))) \\ Washington Bomfim, Jan 13 2011
    
  • Python
    from sympy import isprime
    i=1
    j=1
    while j<=25000:
        if isprime(i) and bin(i)[2:].count("0")<=bin(i)[2:].count("1"):
            print(str(j)+" "+str(i))
            j+=1
        i+=1 # Indranil Ghosh, Feb 03 2017

A057448 a(n+1) = next prime such that a(n+1)-1 | (a(1)...a(n))^5.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 263, 269, 271, 277, 281
Offset: 1

Views

Author

Robert G. Wilson v, Sep 25 2000

Keywords

Crossrefs

Programs

  • Mathematica
    NextPrime[ n_Integer ] := Module[ {k = n + 1}, While[ ! PrimeQ[ k ], k++ ]; Return[ k ] ]; f[ n_List ] := (a = n; b = Apply[ Times, a^5 ]; d = NextPrime[ a[[ -1 ]] ]; While[ ! IntegerQ[ b/(d - 1) ] && d < b+2, d = NextPrime[ d ] ]; AppendTo[ a, d ]; Return[ a ]); Nest[ f, {2}, 75 ]

A122516 Primes in A046992.

Original entry on oeis.org

3, 5, 11, 19, 23, 37, 43, 61, 83, 107, 181, 271, 283, 349, 467, 499, 547, 563, 743, 821, 863, 947, 991, 1013, 1571, 2341, 2437, 2633, 2803, 2837, 2939, 3299, 3373, 3677, 3833, 4073, 4793, 4973, 5387, 5479, 5573, 6043, 6091, 6737, 7907, 8017, 8693, 8867
Offset: 1

Views

Author

Roger L. Bagula, Sep 16 2006

Keywords

Comments

A subset of A057447. - Alexander Adamchuk, Sep 17 2006

Crossrefs

Programs

  • Haskell
    a122516 n = a122516_list !! (n-1)
    a122516_list = filter ((== 1) . a010051) a046992_list
    -- Reinhard Zumkeller, Feb 25 2012
  • Mathematica
    Flatten[Table[If[PrimeQ[Sum[ PrimePi[n], {n, 1, m}]], Sum[PrimePi[n], {n, 1, m}], {}], {m, 1, 200}]]

Formula

a(n) = Prime[ A122933[n] ]. - Alexander Adamchuk, Sep 20 2006

Extensions

Edited by N. J. A. Sloane, Sep 17 2006
More terms from Alexander Adamchuk, Sep 17 2006
Definition corrected, Sep 30 2006
Showing 1-5 of 5 results.