cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A007459 Higgs's primes: a(n+1) = smallest prime > a(n) such that a(n+1)-1 divides the product (a(1)...a(n))^2.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 19, 23, 29, 31, 37, 43, 47, 53, 59, 61, 67, 71, 79, 101, 107, 127, 131, 139, 149, 151, 157, 173, 181, 191, 197, 199, 211, 223, 229, 263, 269, 277, 283, 311, 317, 331, 347, 349, 367, 373, 383, 397, 419, 421, 431, 461, 463, 491, 509, 523, 547, 557, 571
Offset: 1

Views

Author

Keywords

Comments

Named after the British mathematician Denis A. Higgs (1932-2011). - Amiram Eldar, Jun 05 2021
No prime of the form a*b^k + 1 (those in A089200) with a > 0, b > 1 and k > 2 is a Higgs's prime. - Mauro Fiorentini, Aug 08 2023

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a007459 n = a007459_list !! (n-1)
    a007459_list = f 1 a000040_list where
      f q (p:ps) = if mod q (p - 1) == 0 then p : f (q * p ^ 2) ps else f q ps
    -- Reinhard Zumkeller, Apr 14 2013
    
  • Maple
    a:=[2]; P:=1; j:=1;
    for n from 2 to 32 do
    P:=P*a[n-1]^2;
      for i from j+1 to 250 do
      if (P mod (ithprime(i)-1)) = 0 then
      a:=[op(a),ithprime(i)]; j:=i; break; fi;
    od:
    od:
    a; # N. J. A. Sloane, Feb 12 2017
  • Mathematica
    f[ n_List ] := (a = n; b = Apply[ Times, a^2 ]; d = NextPrime[ a[ [ -1 ] ] ]; While[ ! IntegerQ[ b/(d - 1) ] || d > b, d = NextPrime[ d ] ]; AppendTo[ a, d ]; Return[ a ]); Nest[ f, {2}, 75 ]
    nxt[{p_,a_}]:=Module[{np=NextPrime[a]},While[PowerMod[p,2,np-1] != 0,np = NextPrime[np]];{p*np,np}]; NestList[nxt,{2,2},60][[All,2]] (* Harvey P. Dale, Jul 09 2021 *)
  • PARI
    step(v)=my(N=vecprod(v)^2);forprime(p=v[#v]+1,,if(N%(p-1)==0,return(concat(v,p))))
    first(n)=my(v=[2]);for(i=2,n,v=step(v));v \\ Charles R Greathouse IV, Jun 11 2015

Extensions

More terms from David W. Wilson
Definition clarified by N. J. A. Sloane, Feb 12 2017

A057447 a(n+1) = next prime such that a(n+1)-1 | (a(1)...a(n))^3.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 101, 107, 109, 127, 131, 139, 149, 151, 157, 167, 173, 179, 181, 191, 197, 199, 211, 223, 229, 233, 251, 263, 269, 271, 277, 281, 283, 293, 311, 313, 317, 331, 347, 349, 359
Offset: 1

Views

Author

Robert G. Wilson v, Sep 25 2000

Keywords

Comments

No prime of the form a*b^k + 1, with a > 0, b > 1 and k > 3 (including those in A037896) belongs to the sequence. - Mauro Fiorentini, Aug 09 2023

Crossrefs

Programs

  • Mathematica
    NextPrime[ n_Integer ] := Module[ {k = n + 1}, While[ ! PrimeQ[ k ], k++ ]; Return[ k ] ]; f[ n_List ] := (a = n; b = Apply[ Times, a^3 ]; d = NextPrime[ a[[ -1 ]] ]; While[ ! IntegerQ[ b/(d - 1) ] && d < b+2, d = NextPrime[ d ] ]; AppendTo[ a, d ]; Return[ a ]); Nest[ f, {2}, 75 ]
Showing 1-2 of 2 results.