A337607 Decimal expansion of Shanks's constant: the Hardy-Littlewood constant for A000068.
6, 6, 9, 7, 4, 0, 9, 6, 9, 9, 3, 7, 0, 7, 1, 2, 2, 0, 5, 3, 8, 9, 2, 2, 4, 3, 1, 5, 7, 1, 7, 6, 4, 4, 0, 6, 6, 8, 8, 3, 7, 0, 1, 5, 7, 4, 3, 6, 4, 8, 2, 4, 1, 8, 5, 7, 3, 2, 9, 8, 5, 2, 2, 8, 4, 5, 2, 4, 6, 7, 9, 9, 9, 5, 6, 4, 5, 7, 1, 4, 7, 2, 7, 3, 1, 5, 0, 6, 2, 1, 0, 2, 1, 4, 3, 5, 9, 3, 7, 3, 5, 0, 2, 7, 3, 2
Offset: 0
Examples
0.669740969937071220538922431571764406688370157436482...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 90.
Links
- Keith Conrad, Hardy-Littlewood constants in: Mathematical properties of sequences and other combinatorial structures, Jong-Seon No et al. (eds.), Kluwer, Boston/Dordrecht/London, 2003, pp. 133-154, alternative link.
- Salma Ettahri, Olivier Ramaré, Léon Surel, Fast multi-precision computation of some Euler products, arXiv:1908.06808 [math.NT], 2019 (Corollary 1.8).
- Mohan Lal, Primes of the form n^4 + 1, Mathematics of Computation, Vol. 21, No. 98 (1967), pp. 245-247.
- Daniel Shanks, On Numbers of the form n^4 + 1, Mathematics of Computation, Vol. 15, No. 74 (1961), pp. 186-189.
- Daniel Shanks, Lal's constant and generalizations, Mathematics of Computation, Vol. 21, No. 100 (1967), pp. 705-707.
- Eric Weisstein's World of Mathematics, Lal's Constant.
Crossrefs
Programs
-
Mathematica
S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums); P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}]; Z[m_, n_, s_] := (w = 1; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = P[m, n, s*w]/w; sumz = sumz + difz; w++]; Exp[sumz]); Zs[m_, n_, s_] := (w = 2; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = (s^w - s) * P[m, n, w]/w; sumz = sumz + difz; w++]; Exp[-sumz]); $MaxExtraPrecision = 1000; digits = 121; RealDigits[Chop[N[Pi^2/(16*Log[1+Sqrt[2]]) * Zs[8, 1, 4]/Z[8, 1, 2]^2, digits]], 10, digits-1][[1]] (* Vaclav Kotesovec, Jan 15 2021 *)
Formula
Extensions
More digits from Vaclav Kotesovec, Jan 15 2021
Comments