cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 36 results. Next

A226528 Numbers k such that k^(2^13) + 1 is prime (a generalized Fermat prime).

Original entry on oeis.org

1, 30406, 71852, 85654, 111850, 126308, 134492, 144642, 147942, 150152, 165894, 176206, 180924, 201170, 212724, 222764, 225174, 241600, 241860, 248744, 268032, 270674, 302368, 316970, 326260, 347962, 350830, 397468, 410938, 416010, 424584, 425848, 426338
Offset: 1

Views

Author

Robert G. Wilson v, Jun 09 2013

Keywords

Crossrefs

Programs

Extensions

Missing terms inserted (from link) by Jeppe Stig Nielsen, Apr 14 2017

A226529 Numbers k such that k^(2^14) + 1 is prime (a generalized Fermat prime).

Original entry on oeis.org

1, 67234, 101830, 114024, 133858, 162192, 165306, 210714, 216968, 229310, 232798, 422666, 426690, 449732, 462470, 468144, 498904, 506664, 509622, 528614, 572934, 581424, 638980, 641762, 656210, 698480, 704930, 730352, 795810, 840796, 908086, 975248, 976914, 990908, 1007874, 1037748, 1039970, 1067896, 1082054, 1097352, 1102754, 1132526, 1162996, 1171010, 1177808, 1181388
Offset: 1

Views

Author

Robert G. Wilson v, Jun 09 2013

Keywords

Crossrefs

Programs

A226530 Numbers b such that b^(2^15) + 1 is prime (a generalized Fermat prime).

Original entry on oeis.org

1, 70906, 167176, 204462, 249830, 321164, 330716, 332554, 429370, 499310, 524552, 553602, 743788, 825324, 831648, 855124, 999236, 1041870, 1074542, 1096382, 1113768, 1161054, 1167528, 1169486, 1171824, 1210354, 1217284, 1277444, 1519380, 1755378, 1909372, 1922592, 1986700, 2034902, 2147196, 2167350
Offset: 1

Views

Author

Robert G. Wilson v, Jun 09 2013

Keywords

Crossrefs

Programs

A085398 Let Cn(x) be the n-th cyclotomic polynomial; a(n) is the least k>1 such that Cn(k) is prime.

Original entry on oeis.org

3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 6, 2, 4, 3, 2, 10, 2, 22, 2, 2, 4, 6, 2, 2, 2, 2, 2, 14, 3, 61, 2, 10, 2, 14, 2, 15, 25, 11, 2, 5, 5, 2, 6, 30, 11, 24, 7, 7, 2, 5, 7, 19, 3, 2, 2, 3, 30, 2, 9, 46, 85, 2, 3, 3, 3, 11, 16, 59, 7, 2, 2, 22, 2, 21, 61, 41, 7, 2, 2, 8, 5, 2, 2
Offset: 1

Views

Author

Don Reble, Jun 28 2003

Keywords

Comments

Conjecture: a(n) is defined for all n. - Eric Chen, Nov 14 2014
Existence of a(n) is implied by Bunyakovsky's conjecture. - Robert Israel, Nov 13 2014

Examples

			a(11) = 5 because C11(k) is composite for k = 2, 3, 4 and prime for k = 5.
a(37) = 61 because C37(k) is composite for k = 2, 3, 4, ..., 60 and prime for k = 61.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local k;
    for k from 2 do if isprime(numtheory:-cyclotomic(n,k)) then return k fi od
    end proc:
    seq(f(n), n = 1 .. 100); # Robert Israel, Nov 13 2014
  • Mathematica
    Table[k = 2; While[!PrimeQ[Cyclotomic[n, k]], k++]; k, {n, 300}] (* Eric Chen, Nov 14 2014 *)
  • PARI
    a(n) = k=2; while(!isprime(polcyclo(n, k)), k++); k; \\ Michel Marcus, Nov 13 2014

Formula

a(A072226(n)) = 2. - Eric Chen, Nov 14 2014
a(n) = A117544(n) except when n is a prime power, since if n is a prime power, then A117544(n) = 1. - Eric Chen, Nov 14 2014
a(prime(n)) = A066180(n), a(2*prime(n)) = A103795(n), a(2^n) = A056993(n-1), a(3^n) = A153438(n-1), a(2*3^n) = A246120(n-1), a(3*2^n) = A246119(n-1), a(6^n) = A246121(n-1), a(5^n) = A206418(n-1), a(6*A003586(n)) = A205506(n), a(10*A003592(n)) = A181980(n).

A244150 Numbers b such that b^262144+1 is prime.

Original entry on oeis.org

1, 24518, 40734, 145310, 361658, 525094, 676754, 773620, 1415198, 1488256, 1615588, 1828858, 2042774, 2514168, 2611294, 2676404, 3060772, 3547726, 3596074, 3673932, 3853792, 3933508, 4246258, 4489246, 5152128, 5205422, 5828034, 6287774, 6291332, 8521794
Offset: 1

Views

Author

Felix Fröhlich, Jun 21 2014

Keywords

Comments

Base values b yielding a generalized Fermat prime b^(2^k)+1 for k=18.

Crossrefs

Extensions

a(9), announced in message 92163 in PrimeGrid forum, added by Felix Fröhlich, Feb 17 2016
a(10), a(11) sent by Maximilian Pacher, Jun 27 2016, and a(12) on Aug 24 2016. - N. J. A. Sloane
a(13) from Felix Fröhlich, Nov 27 2016
a(14)-a(17) from Jeppe Stig Nielsen, Sep 06 2017
a(1) = 1 inserted by and more terms from Jeppe Stig Nielsen, Sep 10 2018
a(27)-a(30) from Jeppe Stig Nielsen, Sep 21 2019

A251597 Numbers b such that b^65536 + 1 is prime.

Original entry on oeis.org

1, 48594, 108368, 141146, 189590, 255694, 291726, 292550, 357868, 440846, 544118, 549868, 671600, 843832, 857678, 1024390, 1057476, 1087540, 1266062, 1361846, 1374038, 1478036, 1483076, 1540550, 1828502, 1874512, 1927034, 1966374, 2019300, 2041898, 2056292
Offset: 1

Views

Author

Felix Fröhlich, Dec 05 2014

Keywords

Comments

Base values b yielding a generalized Fermat prime b^(2^k) + 1 for k=16.
First square member of sequence is 3934049284 = (A253854(1))^2. - Jeppe Stig Nielsen, Jun 29 2015

Crossrefs

Extensions

Corrected last term, and extended, by Jeppe Stig Nielsen, Jun 29 2015
New b-file, updated with data from Message 89145 at PrimeGrid forum uploaded and sequence data corrected, by Felix Fröhlich, Jan 03 2016
a(1) = 1 inserted and new b-file by Jeppe Stig Nielsen, Sep 10 2018

A243959 Numbers k such that k^524288 + 1 is prime.

Original entry on oeis.org

1, 75898, 341112, 356926, 475856, 1880370, 2061748, 2312092, 2733014, 2788032, 2877652, 2985036, 3214654, 3638450, 4896418, 5897794, 6339004, 8630170, 9332124, 10913140, 11937916
Offset: 1

Views

Author

Felix Fröhlich, Jun 16 2014

Keywords

Comments

Numbers k such that k^(2^j) + 1 is a generalized Fermat prime for j=19.
1880370 is a member, but its position is not yet known. - Jeppe Stig Nielsen, Jan 24 2018
PrimeGrid has now tested and double checked the necessary candidates to prove that 1880370 is a(6). - Jeppe Stig Nielsen, Feb 20 2018

Crossrefs

Programs

Extensions

a(6) from Jeppe Stig Nielsen, Feb 20 2018
a(7) from Jeppe Stig Nielsen, Apr 27 2018
a(1) = 1 inserted and a(8) added by Jeppe Stig Nielsen, Sep 10 2018
a(9)-a(12) from Jeppe Stig Nielsen, Sep 21 2019
a(13) from Jeppe Stig Nielsen, Dec 27 2019
a(14) from Ray Chandler, Mar 28 2022
a(15)-a(17) communicated by Jeppe Stig Nielsen, Apr 01 2024
a(18)-a(21) from Jeppe Stig Nielsen, Jan 11 2025

A253854 Numbers b such that b^131072 + 1 is prime.

Original entry on oeis.org

1, 62722, 130816, 228188, 386892, 572186, 689186, 909548, 1063730, 1176694, 1361244, 1372930, 1560730, 1660830, 1717162, 1722230, 1766192, 1955556, 2194180, 2280466, 2639850, 3450080, 3615210, 3814944, 4085818, 4329134, 4893072, 4974408, 5326454, 5400728, 5471814
Offset: 1

Views

Author

Felix Fröhlich, Jan 17 2015

Keywords

Comments

Base values b yielding a generalized Fermat prime b^(2^k)+1 for k=17.
The first member exceeding 10^((10^6-1)/2^17) is known to be 42654182. - Jeppe Stig Nielsen, Jan 30 2016

Crossrefs

Extensions

Missing term a(8) inserted by Jeppe Stig Nielsen, Jul 02 2015
a(13) from Felix Fröhlich, Nov 01 2015
a(14)-a(20) from Jeppe Stig Nielsen, Jan 30 2016
a(21)-a(31) from Jeppe Stig Nielsen, Sep 06 2017
a(1) = 1 inserted by Jeppe Stig Nielsen, Sep 10 2018

A321323 Numbers k such that k^(2^20) + 1 is prime (a generalized Fermat prime).

Original entry on oeis.org

1, 919444, 1059094, 1951734, 1963736, 3843236
Offset: 1

Views

Author

Jeppe Stig Nielsen, Nov 04 2018

Keywords

Crossrefs

Extensions

a(4) from Jeppe Stig Nielsen, Aug 31 2022
a(5) from Jeppe Stig Nielsen, Oct 21 2022
a(6) from Jeppe Stig Nielsen, Jan 11 2025

A078303 Generalized Fermat numbers: 6^(2^n) + 1, n >= 0.

Original entry on oeis.org

7, 37, 1297, 1679617, 2821109907457, 7958661109946400884391937, 63340286662973277706162286946811886609896461828097
Offset: 0

Views

Author

Eric W. Weisstein, Nov 21 2002

Keywords

Comments

The next term is too large to include.
As for standard Fermat numbers 2^(2^n) + 1, a number (2b)^m + 1 (with b > 1) can only be prime if m is a power of 2. On the other hand, out of the first 13 base-6 Fermat numbers, only the first three are primes.
Either the sequence of (standard) Fermat numbers contains infinitely many composite numbers or the sequence of base-6 Fermat numbers contains infinitely many composite numbers (cf. https://mathoverflow.net/a/404235/1593). - José Hernández, Nov 09 2021
Since all powers of 6 are congruent to 6 (mod 10), all terms of this sequence are congruent to 7 (mod 10). - Daniel Forgues, Jun 22 2011
There are only 5 known Fermat primes of the form 2^(2^n) + 1: {3, 5, 17, 257, 65537}. There are only 2 known base-10 generalized Fermat primes of the form 10^(2^n) + 1: {11, 101}. - Alexander Adamchuk, Mar 17 2007

Examples

			a(0) = 6^1+1 = 7 = 5*(1)+2 = 5*(empty product)+2;
a(1) = 6^2+1 = 37 = 5*(7)+2;
a(2) = 6^4+1 = 1297 = 5*(7*37)+2;
a(3) = 6^8+1 = 1679617 = 5*(7*37*1297)+2;
a(4) = 6^16+1 = 2821109907457 = 5*(7*37*1297*1679617)+2;
a(5) = 6^32+1 = 7958661109946400884391937 = 5*(7*37*1297*1679617*2821109907457)+2;
		

Crossrefs

Cf. A000215 (Fermat numbers: 2^(2^n) + 1, n >= 0).
Cf. A019434 (Fermat primes of the form 2^(2^n) + 1).

Programs

Formula

a(0) = 7, a(n) = (a(n-1)-1)^2 + 1, n >= 1.
a(n) = 5*a(n-1)*a(n-2)*...*a(1)*a(0) + 2, n >= 0, where for n = 0, we get 5*(empty product, i.e., 1)+ 2 = 7 = a(0). This implies that the terms are pairwise coprime. - Daniel Forgues, Jun 20 2011
Sum_{n>=0} 2^n/a(n) = 1/5. - Amiram Eldar, Oct 03 2022

Extensions

Edited by Daniel Forgues, Jun 22 2011
Showing 1-10 of 36 results. Next