A337606 Decimal expansion of the Gaussian twin prime constant: the Hardy-Littlewood constant for A096012.
4, 8, 7, 6, 2, 2, 7, 7, 8, 1, 1, 1, 5, 7, 1, 7, 6, 8, 6, 1, 1, 6, 4, 6, 3, 9, 1, 4, 5, 2, 3, 8, 8, 4, 2, 3, 1, 3, 1, 6, 7, 7, 1, 2, 4, 4, 2, 9, 7, 3, 5, 7, 6, 3, 7, 7, 0, 1, 8, 1, 5, 8, 2, 9, 7, 2, 3, 6, 5, 6, 9, 0, 3, 4, 5, 4, 0, 0, 9, 2, 3, 4, 9, 8, 1, 0, 6, 6, 6, 1, 7, 4, 6, 4, 8, 5, 1, 9, 1, 4, 3, 3, 2, 8, 4, 1
Offset: 0
Examples
0.487622778111571768611646391452388423131677124429735...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 90.
Links
- Keith Conrad, Hardy-Littlewood constants in: Mathematical properties of sequences and other combinatorial structures, Jong-Seon No et al. (eds.), Kluwer, Boston/Dordrecht/London, 2003, pp. 133-154, alternative link.
- Salma Ettahri, Olivier Ramaré, Léon Surel, Fast multi-precision computation of some Euler products, arXiv:1908.06808 [math.NT], 2019 (Section 8).
- Daniel Shanks, , A note on Gaussian twin primes, Mathematics of Computation, Vol. 14, No. 70 (1960), pp. 201-203.
Crossrefs
Programs
-
Mathematica
S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums); P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}]; Z[m_, n_, s_] := (w = 1; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = P[m, n, s*w]/w; sumz = sumz + difz; w++]; Exp[sumz]); Zs[m_, n_, s_] := (w = 2; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = (s^w - s) * P[m, n, w]/w; sumz = sumz + difz; w++]; Exp[-sumz]); $MaxExtraPrecision = 1000; digits = 121; RealDigits[Chop[N[Pi^2/8 * Zs[4, 1, 4]/Z[4, 1, 2]^2, digits]], 10, digits-1][[1]] (* Vaclav Kotesovec, Jan 15 2021 *)
Formula
Equals (Pi^2/8) * Product_{primes p == 1 (mod 4)} (1 - 4/p)*((p + 1)/(p - 1))^2.
Extensions
More digits from Vaclav Kotesovec, Jan 15 2021
Comments