cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A337606 Decimal expansion of the Gaussian twin prime constant: the Hardy-Littlewood constant for A096012.

Original entry on oeis.org

4, 8, 7, 6, 2, 2, 7, 7, 8, 1, 1, 1, 5, 7, 1, 7, 6, 8, 6, 1, 1, 6, 4, 6, 3, 9, 1, 4, 5, 2, 3, 8, 8, 4, 2, 3, 1, 3, 1, 6, 7, 7, 1, 2, 4, 4, 2, 9, 7, 3, 5, 7, 6, 3, 7, 7, 0, 1, 8, 1, 5, 8, 2, 9, 7, 2, 3, 6, 5, 6, 9, 0, 3, 4, 5, 4, 0, 0, 9, 2, 3, 4, 9, 8, 1, 0, 6, 6, 6, 1, 7, 4, 6, 4, 8, 5, 1, 9, 1, 4, 3, 3, 2, 8, 4, 1
Offset: 0

Views

Author

Amiram Eldar, Sep 04 2020

Keywords

Comments

The name of this constant was suggested by Finch (2003).
Gaussian twin primes on the line x + i in the complex plane are Gaussian primes pair of the form (m - 1 + i, m + 1 + i). The numbers m are numbers such that (m-1)^2 + 1 and (m+1)^2 + 1 are both primes (A096012 plus 1).
Shanks (1960) conjectured that the number of these pairs with m <= x is asymptotic to c * li_2(x), where li_2(x) = Integral_{t=2..n} (1/log(t)^2) dt, and c is this constant. He defined c as in the formula section and evaluated it by 0.4876.
The first 100 digits of 4*c were calculated by Ettahri et al. (2019).

Examples

			0.487622778111571768611646391452388423131677124429735...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 90.

Crossrefs

Similar constants: A005597, A331941, A337607, A337608.

Programs

  • Mathematica
    S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
    P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
    Z[m_, n_, s_] := (w = 1; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = P[m, n, s*w]/w; sumz = sumz + difz; w++]; Exp[sumz]);
    Zs[m_, n_, s_] := (w = 2; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = (s^w - s) * P[m, n, w]/w; sumz = sumz + difz; w++]; Exp[-sumz]);
    $MaxExtraPrecision = 1000; digits = 121; RealDigits[Chop[N[Pi^2/8 * Zs[4, 1, 4]/Z[4, 1, 2]^2, digits]], 10, digits-1][[1]] (* Vaclav Kotesovec, Jan 15 2021 *)

Formula

Equals (Pi^2/8) * Product_{primes p == 1 (mod 4)} (1 - 4/p)*((p + 1)/(p - 1))^2.

Extensions

More digits from Vaclav Kotesovec, Jan 15 2021

A337607 Decimal expansion of Shanks's constant: the Hardy-Littlewood constant for A000068.

Original entry on oeis.org

6, 6, 9, 7, 4, 0, 9, 6, 9, 9, 3, 7, 0, 7, 1, 2, 2, 0, 5, 3, 8, 9, 2, 2, 4, 3, 1, 5, 7, 1, 7, 6, 4, 4, 0, 6, 6, 8, 8, 3, 7, 0, 1, 5, 7, 4, 3, 6, 4, 8, 2, 4, 1, 8, 5, 7, 3, 2, 9, 8, 5, 2, 2, 8, 4, 5, 2, 4, 6, 7, 9, 9, 9, 5, 6, 4, 5, 7, 1, 4, 7, 2, 7, 3, 1, 5, 0, 6, 2, 1, 0, 2, 1, 4, 3, 5, 9, 3, 7, 3, 5, 0, 2, 7, 3, 2
Offset: 0

Views

Author

Amiram Eldar, Sep 04 2020

Keywords

Comments

Named by Finch (2003) after the American mathematician Daniel Shanks (1917 - 1996).
Shanks (1961) conjectured that the number of primes of the form m^4 + 1 (A037896) with m <= x is asymptotic to c * li(x), where li(x) is the logarithmic integral function and c is this constant. He defined c as in the formula section and evaluated it by 0.66974.
The first 100 digits of this constant were calculated by Ettahri et al. (2019).

Examples

			0.669740969937071220538922431571764406688370157436482...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 90.

Crossrefs

Similar constants: A005597, A331941, A337606, A337608.

Programs

  • Mathematica
    S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
    P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
    Z[m_, n_, s_] := (w = 1; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = P[m, n, s*w]/w; sumz = sumz + difz; w++]; Exp[sumz]);
    Zs[m_, n_, s_] := (w = 2; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = (s^w - s) * P[m, n, w]/w; sumz = sumz + difz; w++]; Exp[-sumz]);
    $MaxExtraPrecision = 1000; digits = 121; RealDigits[Chop[N[Pi^2/(16*Log[1+Sqrt[2]]) * Zs[8, 1, 4]/Z[8, 1, 2]^2, digits]], 10, digits-1][[1]] (* Vaclav Kotesovec, Jan 15 2021 *)

Formula

Equals (Pi^2/(16*log(1+sqrt(2)))) * Product_{primes p == 1 (mod 8)} (1 - 4/p)*((p + 1)/(p - 1))^2 = (Pi/8) * A088367 * A334826.

Extensions

More digits from Vaclav Kotesovec, Jan 15 2021
Showing 1-2 of 2 results.