A088360 Duplicate of A057002.
1, 824, 1476, 1632, 2462, 2484, 2520, 3064, 3402, 3820, 4026, 6640, 7026, 7158, 9070
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
a005574 n = a005574_list !! (n-1) a005574_list = filter ((== 1) . a010051' . (+ 1) . (^ 2)) [0..] -- Reinhard Zumkeller, Jul 03 2015
[n: n in [0..400] | IsPrime(n^2+1)]; // Vincenzo Librandi, Nov 18 2010
Select[Range[350], PrimeQ[ #^2 + 1] &] (* Stefan Steinerberger, Apr 06 2006 *) Join[{1},2Flatten[Position[PrimeQ[Table[x^2+1,{x,2,1000,2}]],True]]] (* Fred Patrick Doty, Aug 18 2017 *)
isA005574(n) = isprime(n^2+1) \\ Michael B. Porter, Mar 20 2010
for(n=1, 1e3, if(isprime(n^2 + 1), print1(n, ", "))) \\ Altug Alkan, Oct 14 2015
from sympy import isprime; [print(n, end = ', ') for n in range(1, 400) if isprime(n*n+1)] # Ya-Ping Lu, Apr 23 2025
[n: n in [0..800] | IsPrime(n^4+1)]; // Vincenzo Librandi, Nov 18 2010
Select[Range[10^2*2], PrimeQ[ #^4+1] &] (* Vladimir Joseph Stephan Orlovsky, May 01 2008 *)
{a(n) = local(m); if( n<1, 0, for(k=1, n, until( isprime(m^4 + 1), m++)); m)};
list(lim)=my(v=List([1])); forstep(k=2,lim,2, if(isprime(k^4+1), listput(v,k))); Vec(v) \\ Charles R Greathouse IV, Mar 31 2022
[ n: n in [0..1500] | IsPrime(n^16+1) ]; // Vincenzo Librandi, Nov 18 2010
lst={};Do[If[PrimeQ[n^16+1], AppendTo[lst, n]], {n, 10^4}];lst (* Vladimir Joseph Stephan Orlovsky, Aug 20 2008 *) s=Reap[Sow[1];Do[If[PrimeQ[n^16+1],Sow[n]],{n,2,40352,2}]][[2,1]] (* Zak Seidov, Dec 22 2010 *) Join[{1},2*Flatten[Position[Range[2,1100,2]^16+1,?PrimeQ]]] (* _Harvey P. Dale, Jun 26 2017 *)
isA006313(n) = isprime(n^16+1) \\ Michael B. Porter, Mar 25 2010
[n: n in [0..2000] | IsPrime(n^8+1)]; // Vincenzo Librandi, Nov 18 2010
Select[Range[1300],PrimeQ[#^8+1]&] (* Harvey P. Dale, Mar 31 2011 *)
isA006314(n) = isprime(n^8+1) \\ Michael B. Porter, Mar 24 2010
[n: n in [1..500]| IsPrime((n^5+1) div (n+1))]; // Vincenzo Librandi, Nov 14 2014
A246392:=n->`if`(isprime((n^5+1)/(n+1)),n,NULL): seq(A246392(n), n=1..500); # Wesley Ivan Hurt, Nov 15 2014
Select[Range[700], PrimeQ[(#^5 + 1) / (# + 1)] &] (* Vincenzo Librandi, Nov 14 2014 *)
for(n=1,10^3,if(isprime(polcyclo(10,n)),print1(n,", "))); \\ Joerg Arndt, Nov 13 2014
Do[ k = 1; While[ PowerMod[ n, 128, 2*k*128 + 1 ] != 2*k*128 && k < 10^3, k++ ]; If[ k == 10^3 && PrimeQ[ n^128 + 1 ], Print[ n ] ], {n, 2, 15000, 2} ]
isA056994(n) = isprime(n^128+1) \\ Michael B. Porter, Mar 30 2010
[n: n in [1..3000] | IsPrime(n^32 + 1)]; // Vincenzo Librandi, Sep 25 2012
lst={};Do[If[PrimeQ[n^32+1], Print[n];AppendTo[lst, n]], {n, 10^5}];lst (* Vladimir Joseph Stephan Orlovsky, Aug 21 2008 *) Select[Range[0, 2700], PrimeQ[(#^32 + 1)] &] (* Vincenzo Librandi, Sep 25 2012 *)
isA006315(n) = isprime(n^32+1) \\ Michael B. Porter, Mar 26 2010
The primes are 2^(2^0) + 1 = 3, 2^(2^1) + 1 = 5, 2^(2^2) + 1 = 17, 2^(2^3) + 1 = 257, 2^(2^4) + 1 = 65537, 30^(2^5) + 1, 102^(2^6) + 1, ....
f[n_] := (p = 2^n; k = 2; While[cp = k^p + 1; !PrimeQ@cp, k++ ]; k); Do[ Print[{n, f@n}], {n, 0, 17}] (* Lei Zhou, Feb 21 2005 *)
a(n)=my(k=2);while(!isprime(k^(2^n)+1),k++);k \\ Anders Hellström, Sep 16 2015
[n: n in [1..4200] | IsPrime(n^64 + 1)]; // Vincenzo Librandi, Sep 25 2012
lst={};Do[If[PrimeQ[n^64+1], Print[n];AppendTo[lst, n]], {n, 10^4}];lst (* Vladimir Joseph Stephan Orlovsky, Aug 21 2008 *) Select[Range[0, 4200], PrimeQ[(#^64 + 1)] &] (* Vincenzo Librandi, Sep 25 2012 *)
isA006316(n) = isprime(n^64+1) \\ Michael B. Porter, Mar 28 2010
Comments