cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A188764 Primes p such that all prime factors of p-2 have exponent 3.

Original entry on oeis.org

3, 29, 127, 24391, 274627, 328511, 357913, 571789, 1157627, 1442899, 1860869, 2146691, 2924209, 5177719, 9129331, 9938377, 10503461, 12326393, 15438251, 18191449, 24642173, 26730901, 28372627, 30080233, 39651823
Offset: 1

Views

Author

Keywords

Comments

A048636 is the subsequence of terms where there is only one prime divisor of p-2. - M. F. Hasler, Jan 13 2025

Examples

			30080233-2 = 311^3, 39651823-2 = 11^3*31^3, ...
3-2 = 1 has no prime factors, so is trivially a member.
		

Crossrefs

Subsequence of A144953; A048636 is a subsequence.

Programs

  • Mathematica
    Prepend[Select[Table[Prime[n],{n,3000000}],Length[Union[Last/@FactorInteger[#-2]]]==1&&Union[Last/@FactorInteger[#-2]]=={3}&], 3]
    Prepend[Select[Prime[Range[25*10^5]],Union[FactorInteger[#-2][[All,2]]]=={3}&], 3] (* Harvey P. Dale, Nov 22 2018 *)
    seq[lim_] := Select[Select[Range[Floor[Surd[lim-2, 3]]], SquareFreeQ]^3 + 2, PrimeQ]; seq[4*10^7] (* Amiram Eldar, Jan 18 2025 *)
  • PARI
    list(lim)=my(v=List()); forsquarefree(k=1,sqrtnint(lim\1-2,3), my(p=k[1]^3+2); if(isprime(p), listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Jan 14 2025

Formula

a(n) >> n^3. - Charles R Greathouse IV, Jan 14 2025

Extensions

a(1) = 3 inserted by Charles R Greathouse IV, Jan 14 2025

A089195 Primes p such that all prime factors of p-1 have exponent 2.

Original entry on oeis.org

2, 5, 37, 101, 197, 677, 4357, 5477, 8837, 12101, 16901, 17957, 21317, 28901, 42437, 44101, 52901, 98597, 106277, 148997, 164837, 184901, 217157, 220901, 224677, 324901, 401957, 417317, 427717, 454277, 476101, 509797, 682277, 792101, 820837
Offset: 1

Views

Author

Cino Hilliard, Dec 08 2003

Keywords

Comments

This property for prime p-1 = cube only numbers does not hold since the sum of 2 cubes has factors and p-1 = q^3 => p = q^3+1 = sum of 2 cubes.

Examples

			101 is included because 100 = 2^2*5^2 only square factors. 109 is not because while 108=2^2*3^3 has a square only factor it also has a cube factor.
		

Crossrefs

Programs

  • Mathematica
    Prepend[Select[Table[Prime[n],{n,70000}],Length[Union[Last/@FactorInteger[#-1]]]==1&&Union[Last/@FactorInteger[#-1]]=={2}&], 2] (* Vladimir Joseph Stephan Orlovsky, Apr 08 2011 *)
    seq[lim_] := Select[Select[Range[Floor[Surd[lim-1, 2]]], SquareFreeQ]^2 + 1, PrimeQ]; seq[10^6] (* Amiram Eldar, Jan 18 2025 *)
  • PARI
    list(lim) = select(isprime, apply(x -> x^2 + 1, select(issquarefree, vector(sqrtnint(lim-1, 2), i, i)))); \\ Amiram Eldar, Jan 18 2025

Extensions

a(1) = 2 inserted by Amiram Eldar, Jan 18 2025
Showing 1-2 of 2 results.