cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A048636 Primes of the form prime^3 + 2.

Original entry on oeis.org

29, 127, 24391, 357913, 571789, 1442899, 5177719, 18191449, 30080233, 73560061, 80062993, 118370773, 127263529, 131872231, 318611989, 344472103, 440711083, 461889919, 590589721, 756058033, 865523179, 1095912793, 1298596573, 1341919729, 1524845953, 1697936059
Offset: 1

Views

Author

Keywords

Comments

The first terms in the intersection with A092402, i.e., of the form p + 2^3, are (18191449, 1341919729, 2588282119, 3532642669, 16445197009, ...). - M. F. Hasler, Jan 13 2025

Examples

			a(2) = 127 = 5^3 + 2 and 5 is prime.
		

Crossrefs

Cf. A048637.
Cf. A092402 (primes of the form p + 8), A321891 (union of the two); A188764 (primes of the form (product of distinct primes^3) + 2).

Programs

  • Maple
    select(isprime, [ithprime(i)^3+2$i=1..300])[];  # Alois P. Heinz, Jan 13 2025
  • Mathematica
    lst={};Do[s=Prime[n]^3;If[PrimeQ[p=s+2], AppendTo[lst, p]], {n, 6!}];lst (* Vladimir Joseph Stephan Orlovsky, Sep 26 2008 *)
  • PARI
    forprime (p=2,1100,if(isprime(p^3+2),print1(p^3+2,", "))) \\ Hugo Pfoertner, Oct 30 2018

A089195 Primes p such that all prime factors of p-1 have exponent 2.

Original entry on oeis.org

2, 5, 37, 101, 197, 677, 4357, 5477, 8837, 12101, 16901, 17957, 21317, 28901, 42437, 44101, 52901, 98597, 106277, 148997, 164837, 184901, 217157, 220901, 224677, 324901, 401957, 417317, 427717, 454277, 476101, 509797, 682277, 792101, 820837
Offset: 1

Views

Author

Cino Hilliard, Dec 08 2003

Keywords

Comments

This property for prime p-1 = cube only numbers does not hold since the sum of 2 cubes has factors and p-1 = q^3 => p = q^3+1 = sum of 2 cubes.

Examples

			101 is included because 100 = 2^2*5^2 only square factors. 109 is not because while 108=2^2*3^3 has a square only factor it also has a cube factor.
		

Crossrefs

Programs

  • Mathematica
    Prepend[Select[Table[Prime[n],{n,70000}],Length[Union[Last/@FactorInteger[#-1]]]==1&&Union[Last/@FactorInteger[#-1]]=={2}&], 2] (* Vladimir Joseph Stephan Orlovsky, Apr 08 2011 *)
    seq[lim_] := Select[Select[Range[Floor[Surd[lim-1, 2]]], SquareFreeQ]^2 + 1, PrimeQ]; seq[10^6] (* Amiram Eldar, Jan 18 2025 *)
  • PARI
    list(lim) = select(isprime, apply(x -> x^2 + 1, select(issquarefree, vector(sqrtnint(lim-1, 2), i, i)))); \\ Amiram Eldar, Jan 18 2025

Extensions

a(1) = 2 inserted by Amiram Eldar, Jan 18 2025

A188717 Primes p such that all prime factors of p-1 have exponent 4.

Original entry on oeis.org

2, 17, 1297, 1336337, 4477457, 29986577, 45212177, 126247697, 193877777, 406586897, 562448657, 916636177, 1416468497, 1944810001, 3208542737, 4162314257, 5006411537, 5972816657, 12444741137, 19565295377, 34188010001, 38167092497, 47156728337, 59553569297, 61505984017
Offset: 1

Views

Author

Keywords

Examples

			17-1 = 2^4, 1297-1 = 2^4*3^4, 1336337-1 = 2^4*17^4, 4477457-1 = 2^4*23^4, ...
		

Crossrefs

Cf. A089195 (exponent 2), A037896 (primes of the form k^4+1), A188764.

Programs

  • Mathematica
    Prepend[Select[Table[Prime[n],{n,600000}],Length[Union[Last/@FactorInteger[#-1]]]==1&&Union[Last/@FactorInteger[#-1]]=={4}&], 2]
    seq[lim_] := Select[Select[Range[Floor[Surd[lim-1, 2]]], SquareFreeQ]^4 + 1, PrimeQ]; seq[10^6] (* Amiram Eldar, Jan 18 2025 *)
  • PARI
    list(lim) = select(isprime, apply(x -> x^4 + 1, select(issquarefree, vector(sqrtnint(lim-1, 4), i, i)))); \\ Amiram Eldar, Jan 18 2025

Extensions

a(12)-a(22) from Donovan Johnson, Apr 10 2011
a(1) = 2 inserted and a(23)-a(25) added by Amiram Eldar, Jan 18 2025
Showing 1-3 of 3 results.