cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A188764 Primes p such that all prime factors of p-2 have exponent 3.

Original entry on oeis.org

3, 29, 127, 24391, 274627, 328511, 357913, 571789, 1157627, 1442899, 1860869, 2146691, 2924209, 5177719, 9129331, 9938377, 10503461, 12326393, 15438251, 18191449, 24642173, 26730901, 28372627, 30080233, 39651823
Offset: 1

Views

Author

Keywords

Comments

A048636 is the subsequence of terms where there is only one prime divisor of p-2. - M. F. Hasler, Jan 13 2025

Examples

			30080233-2 = 311^3, 39651823-2 = 11^3*31^3, ...
3-2 = 1 has no prime factors, so is trivially a member.
		

Crossrefs

Subsequence of A144953; A048636 is a subsequence.

Programs

  • Mathematica
    Prepend[Select[Table[Prime[n],{n,3000000}],Length[Union[Last/@FactorInteger[#-2]]]==1&&Union[Last/@FactorInteger[#-2]]=={3}&], 3]
    Prepend[Select[Prime[Range[25*10^5]],Union[FactorInteger[#-2][[All,2]]]=={3}&], 3] (* Harvey P. Dale, Nov 22 2018 *)
    seq[lim_] := Select[Select[Range[Floor[Surd[lim-2, 3]]], SquareFreeQ]^3 + 2, PrimeQ]; seq[4*10^7] (* Amiram Eldar, Jan 18 2025 *)
  • PARI
    list(lim)=my(v=List()); forsquarefree(k=1,sqrtnint(lim\1-2,3), my(p=k[1]^3+2); if(isprime(p), listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Jan 14 2025

Formula

a(n) >> n^3. - Charles R Greathouse IV, Jan 14 2025

Extensions

a(1) = 3 inserted by Charles R Greathouse IV, Jan 14 2025

A188717 Primes p such that all prime factors of p-1 have exponent 4.

Original entry on oeis.org

2, 17, 1297, 1336337, 4477457, 29986577, 45212177, 126247697, 193877777, 406586897, 562448657, 916636177, 1416468497, 1944810001, 3208542737, 4162314257, 5006411537, 5972816657, 12444741137, 19565295377, 34188010001, 38167092497, 47156728337, 59553569297, 61505984017
Offset: 1

Views

Author

Keywords

Examples

			17-1 = 2^4, 1297-1 = 2^4*3^4, 1336337-1 = 2^4*17^4, 4477457-1 = 2^4*23^4, ...
		

Crossrefs

Cf. A089195 (exponent 2), A037896 (primes of the form k^4+1), A188764.

Programs

  • Mathematica
    Prepend[Select[Table[Prime[n],{n,600000}],Length[Union[Last/@FactorInteger[#-1]]]==1&&Union[Last/@FactorInteger[#-1]]=={4}&], 2]
    seq[lim_] := Select[Select[Range[Floor[Surd[lim-1, 2]]], SquareFreeQ]^4 + 1, PrimeQ]; seq[10^6] (* Amiram Eldar, Jan 18 2025 *)
  • PARI
    list(lim) = select(isprime, apply(x -> x^4 + 1, select(issquarefree, vector(sqrtnint(lim-1, 4), i, i)))); \\ Amiram Eldar, Jan 18 2025

Extensions

a(12)-a(22) from Donovan Johnson, Apr 10 2011
a(1) = 2 inserted and a(23)-a(25) added by Amiram Eldar, Jan 18 2025
Showing 1-2 of 2 results.