A055418 Number of points in N^n of norm <= 3.
1, 4, 11, 29, 70, 157, 337, 702, 1420, 2780, 5258, 9615, 17043, 29381, 49430, 81404, 131563, 209084, 327237, 504945, 768820, 1155781, 1716375, 2518938, 3654750, 5244356, 7445244, 10461091, 14552809, 20051645, 27374612, 37042552, 49701157
Offset: 0
Examples
There are exactly 19 coordinate configurations (up to permutation) with up to 9 nonzero positive coordinates that can produce a vector of norm <= 3: {..., 0, 0, 0, 0, 0, 0, 0, 0, 0} 0 {..., 0, 0, 0, 0, 0, 0, 0, 0, 1} 1 {..., 0, 0, 0, 0, 0, 0, 0, 0, 2} 2 {..., 0, 0, 0, 0, 0, 0, 0, 0, 3} 3 {..., 0, 0, 0, 0, 0, 0, 0, 1, 1} sqrt(2) {..., 0, 0, 0, 0, 0, 0, 0, 1, 2} sqrt(5) {..., 0, 0, 0, 0, 0, 0, 0, 2, 2} 2 sqrt(2) {..., 0, 0, 0, 0, 0, 0, 1, 1, 1} sqrt(3) {..., 0, 0, 0, 0, 0, 0, 1, 1, 2} sqrt(2) sqrt(3) {..., 0, 0, 0, 0, 0, 0, 1, 2, 2} 3 {..., 0, 0, 0, 0, 0, 1, 1, 1, 1} 2 {..., 0, 0, 0, 0, 0, 1, 1, 1, 2} sqrt(7) {..., 0, 0, 0, 0, 1, 1, 1, 1, 1} sqrt(5) {..., 0, 0, 0, 0, 1, 1, 1, 1, 2} 2 sqrt(2) {..., 0, 0, 0, 1, 1, 1, 1, 1, 1} sqrt(6) {..., 0, 0, 0, 1, 1, 1, 1, 1, 2} 3 {..., 0, 0, 1, 1, 1, 1, 1, 1, 1} sqrt(7) {..., 0, 1, 1, 1, 1, 1, 1, 1, 1} 2 sqrt(2) {..., 1, 1, 1, 1, 1, 1, 1, 1, 1} 3 To produce the formula for a(n), it is sufficient to sum the number of permutations of these configurations in a vector of arbitrary length n. This gives in the same order: a(n) = 1 + n + n + n + binomial(n, 2) + n*(n - 1) + binomial(n, 2) + binomial(n, 3) + n*binomial(n-1, 2) + n*binomial(n-1, 2) + binomial(n, 4) + n*binomial(n-1, 3) + binomial(n, 5) + n*binomial(n-1, 4) + binomial(n, 6) + n*binomial(n-1, 5) + binomial(n, 7) + binomial(n, 8) + binomial(n, 9). This is a polynomial of degree 9 in n. a(n) = (1 + n) (9! + n (452016 + n (-224244 + n (152108 + n (-17351 + n (-16 + n (394 + (-28 + n) n)))))))/(9!).
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
Formula
Satisfies a degree nine polynomial (see Example section). - Olivier Gérard, Mar 30 2015
G.f.: -(8*x^8-35*x^7+51*x^6-30*x^5-5*x^4+21*x^3-16*x^2+6*x-1) / (x-1)^10. - Colin Barker, Jul 07 2013