A055505 Numerators in expansion of (1-x)^(-1/x)/e.
1, 1, 11, 7, 2447, 959, 238043, 67223, 559440199, 123377159, 29128857391, 5267725147, 9447595434410813, 1447646915836493, 225037938358318573, 29911565062525361, 3651003047854884043877, 38950782815463986767
Offset: 0
Examples
1+1/2*x+11/24*x^2+7/16*x^3+2447/5760*x^4+... 1, -1/2, 11/24, -7/16, 2447/5760, -959/2304, 238043/580608, -67223/165888, ...
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 293, Problem 11.
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.3.1.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..250
- Markus Brede, On the convergence of the sequence defining Euler's number, Math. Intelligencer, 27, no. 3 (2005), 6-7.
- Chao-Ping Chen and Junesang Choi, An Asymptotic Formula for (1+1/x)^x Based on the Partition Function, Amer. Math. Monthly 121 (2014), no. 4, 338--343. MR3183017.
- Branko Malesevic, Yue Hu, and Cristinel Mortici, Accurate Estimates of (1+x)^{1/x} Involved in Carleman Inequality and Keller Limit, arXiv:1801.04963 [math.CA], 2018.
Programs
-
Maple
T:= proc(u) local k, l; add( Stirling1(u+k,k)*((u+k)!)^(-1)* add( (-1)^l/l!, l=0..u-k), k=0..u); end;
-
Mathematica
a[n_] := Sum[StirlingS1[n+k, k]/(n+k)!*Sum[(-1)^j/j!, {j, 0, n-k}], {k, 0, n}]; Table[a[n] // Numerator // Abs, {n, 0, 17}] (* Jean-François Alcover, Mar 04 2014, after Maple *) Numerator[((1-x)^(-1/x)/E + O[x]^20)[[3]]] (* or *) Numerator[Table[Sum[StirlingS1[n+k, k] Subfactorial[n-k] Binomial[2n, n+k], {k, 0, n}] (-1)^n/(2n)!, {n, 0, 10}]] (* Vladimir Reshetnikov, Sep 23 2016 *)
Formula
See Maple line for formula.
Extensions
Edited by N. J. A. Sloane, Jul 01 2008 at the suggestion of R. J. Mathar
Comments