A055509 Number of odd primes in sequence obtained in 3x+1 (or Collatz) problem starting at n.
0, 0, 2, 0, 1, 2, 5, 0, 5, 1, 4, 2, 2, 5, 3, 0, 3, 5, 6, 1, 0, 4, 3, 2, 6, 2, 24, 5, 5, 3, 23, 0, 6, 3, 2, 5, 6, 6, 10, 1, 24, 0, 7, 4, 3, 3, 22, 2, 6, 6, 5, 2, 2, 24, 23, 5, 7, 5, 10, 3, 4, 23, 19, 0, 6, 6, 8, 3, 2, 2, 21, 5, 24, 6, 1, 6, 5, 10, 10, 1, 4, 24, 23, 0, 0, 7, 8, 4, 9, 3, 19, 3, 2, 22, 19
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Collatz Problem
- Wikipedia, Collatz conjecture
- Index entries for sequences related to 3x+1 (or Collatz) problem
Programs
-
Haskell
a055509 n = sum $ map a010051 $ takeWhile (> 2) $ iterate a006370 n -- Reinhard Zumkeller, Oct 08 2011
-
Maple
g:= proc(n) option remember; local x; x:= 3*n+1; x:= x/2^padic:-ordp(x,2); if isprime(n) then procname(x)+1 else procname(x) fi end proc: g(1):= 0: seq(g(n/2^padic:-ordp(n,2)),n=1..100); # Robert Israel, Dec 05 2017
-
Mathematica
Join[{0}, Table[Count[NestWhileList[If[EvenQ[#], #/2, 3 # + 1] &, n, # > 1 &], ?PrimeQ] - 1, {n, 2, 94}]] (* _Jayanta Basu, Jun 15 2013 *)
-
PARI
A078350(n,c=0)={while(1
>=valuation(n,2), isprime(n)&&c++; n=n*3+1);c} \\ M. F. Hasler, Dec 05 2017
Formula
a(n) = A078350(n) - 1 for n > 1.
a(A196871(n)) = 0. - Reinhard Zumkeller, Oct 08 2011
From Robert Israel, Dec 05 2017: (Start)
If n is odd, a(n) = a(3*n+1) + A010051(n).
If n is even, a(n) = a(n/2). (End)
Extensions
More terms from Larry Reeves (larryr(AT)acm.org), Aug 09 2001