cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055527 Shortest other leg of a Pythagorean triangle with n as length of a leg.

Original entry on oeis.org

4, 3, 12, 8, 24, 6, 12, 24, 60, 5, 84, 48, 8, 12, 144, 24, 180, 15, 20, 120, 264, 7, 60, 168, 36, 21, 420, 16, 480, 24, 44, 288, 12, 15, 684, 360, 52, 9, 840, 40, 924, 33, 24, 528, 1104, 14, 168, 120, 68, 39, 1404, 72, 48, 33, 76, 840, 1740, 11, 1860, 960, 16, 48, 72
Offset: 3

Views

Author

Henry Bottomley, May 22 2000

Keywords

Comments

From Alex Ratushnyak, Mar 30 2014: (Start)
Least positive k such that n^2 + k^2 is a square.
For odd n, a(n) <= 4*triangular((n-1)/2), because n^2 + (4 * triangular((n-1)/2))^2 = ((n^2+1)/2) ^ 2, which is a perfect square since n is odd.
For n = 4*k+2, a(n) <= 8*triangular(k), because (4k+2)^2 + (4*k*(k+1))^2 = (4*k^2 + 4*k + 2)^2. (End)

Crossrefs

See A082183 for a similar sequence involving triangular numbers.

Programs

  • Mathematica
    Table[k = 1; While[! IntegerQ[Sqrt[n^2 + k^2]], k++]; k, {n, 3, 100}] (* T. D. Noe, Apr 02 2014 *)

Formula

a(n) = sqrt(A055526(n)^2-n^2) = 2*A054436/n.