A055530 The recurrence b(k) = 10*b(k-1) + k^n with b(0)=0 has b(k)/10^k converging to a(n)/9^(n+1).
1, 10, 110, 1410, 22110, 428610, 10027710, 274463010, 8585407710, 302029998210, 11804909261310, 507547187120610, 23805911748929310, 1209638912316543810, 66192799008847310910, 3880867089138927234210, 242703222549879015746910
Offset: 0
References
- Alex Walker, On the Growth of Sequences, 2007
Programs
-
Maple
a:=n->sum(9^(n+1)*x^n/10^x,x=1..infinity): seq(a(n),n=0..17); # Emeric Deutsch, Mar 23 2007
Formula
a(n) = Sum_{x>=1} (9^(n+1))(x^n) / 10^x. - Alexander Walker, Feb 26 2007
Extensions
Corrected and extended by Emeric Deutsch, Mar 23 2007