cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A055584 Triangle of partial row sums (prs) of triangle A055252.

Original entry on oeis.org

1, 5, 1, 19, 6, 1, 63, 25, 7, 1, 192, 88, 32, 8, 1, 552, 280, 120, 40, 9, 1, 1520, 832, 400, 160, 49, 10, 1, 4048, 2352, 1232, 560, 209, 59, 11, 1, 10496, 6400, 3584, 1792, 769, 268, 70, 12, 1, 26624, 16896, 9984, 5376, 2561, 1037, 338, 82, 13, 1, 66304, 43520
Offset: 0

Views

Author

Wolfdieter Lang, May 26 2000

Keywords

Comments

In the language of the Shapiro et al. reference (given in A053121) such a lower triangular (ordinary) convolution array, considered as matrix, belongs to the Riordan-group. The G.f. for the row polynomials p(n,x) (increasing powers of x) is (((1-z)^3)/(1-2*z)^4)/(1-x*z/(1-z)).
This is the fourth member of the family of Riordan-type matrices obtained from A007318(n,m) (Pascal's triangle read as lower triangular matrix) by repeated application of the prs-procedure.
The column sequences appear as A049612(n+1), A055585, A001794, A001789(n+3), A027608, A055586 for m=0..5.

Examples

			[0] 1
[1] 5, 1
[2] 19, 6, 1
[3] 63, 25, 7, 1
[4] 192, 88, 32, 8, 1
[5] 552, 280, 120, 40, 9, 1
[6] 1520, 832, 400, 160, 49, 10, 1
[7] 4048, 2352, 1232, 560, 209, 59, 11, 1
Fourth row polynomial (n=3): p(3, x)= 63 + 25*x + 7*x^2 + x^3.
		

Crossrefs

Cf. A007318, A055248, A055249, A055252. Row sums: A049600(n+1, 4).

Programs

  • Maple
    T := (n, k) -> binomial(n, k)*hypergeom([4, k - n], [k + 1], -1):
    for n from 0 to 7 do seq(simplify(T(n, k)), k = 0..n) od; # Peter Luschny, Sep 23 2024

Formula

a(n, m)=sum(A055252(n, k), k=m..n), n >= m >= 0, a(n, m) := 0 if n
Column m recursion: a(n, m)= sum(a(j, m), j=m..n-1)+ A055252(n, m), n >= m >= 0, a(n, m) := 0 if n
G.f. for column m: (((1-x)^3)/(1-2*x)^4)*(x/(1-x))^m, m >= 0.
T(n, k) = binomial(n, k)*hypergeom([4, k - n], [k + 1], -1). - Peter Luschny, Sep 23 2024

A181332 Triangle read by rows: T(n,k) is the number of 2-compositions of n having k nonzero entries in the top row. A 2-composition of n is a nonnegative matrix with two rows, such that each column has at least one nonzero entry and whose entries sum up to n.

Original entry on oeis.org

1, 1, 1, 2, 4, 1, 4, 12, 7, 1, 8, 32, 31, 10, 1, 16, 80, 111, 59, 13, 1, 32, 192, 351, 268, 96, 16, 1, 64, 448, 1023, 1037, 530, 142, 19, 1, 128, 1024, 2815, 3598, 2435, 924, 197, 22, 1, 256, 2304, 7423, 11535, 9843, 4923, 1477, 261, 25, 1, 512, 5120, 18943, 34832
Offset: 0

Author

Emeric Deutsch, Oct 13 2010

Keywords

Comments

The sum of entries in row n is A003480(n).
T(n,1) = A001787(n).
T(n,2) = A055580(n-2) (n>=2).
T(n,3) = A055586(n-3) (n>=3).
Sum(k*T(n,k), k>=0) = A054146(n).

Examples

			T(2,1)=4 because we have (1/1), (2/0), (1,0/0,1), and (0,1/1,0) (the 2-compositions are written as (top row / bottom row)).
Triangle starts:
1;
1,1;
2,4,1;
4,12,7,1;
8,32,31,10,1;
16,80,111,59,13,1;
		

Programs

  • Maple
    T := proc (n, k) options operator, arrow: sum(2^j*binomial(k+j, k)*binomial(n-j-2, k-2), j = 0 .. n-k) end proc: for n from 0 to 10 do seq(T(n, k), k = 0 .. n) end do; # yields sequence in triangular form

Formula

T(n,k) = sum(2^j*binomial(k+j,k)*binomial(n-2-j,k-2), j=0..n-k).
G.f.: G(t,x) = (1-x)^2/(1-3*x+2*x^2-t*x).
The g.f. of column k is x^k/((1-2*x)^(k+1)*(1-x)^(k-1)) (we have a Riordan array).
T(n,k) = 3*T(n-1,k)+T(n-1,k-1)-2*T(n-2,k), with T(0,0)=T(1,0)=T(1,1)=T(2,2)=1, T(2,0)=2, T(2,1)=4, T(n,k)=0 if k<0 or if k>n. - _Philippe Deléham, Nov 26 2013

A375550 Triangle read by rows: T(m, n, k) = binomial(n + 1, n - k)*hypergeom([m, k - n], [k + 2], -1) for m = 4.

Original entry on oeis.org

1, 6, 1, 25, 7, 1, 88, 32, 8, 1, 280, 120, 40, 9, 1, 832, 400, 160, 49, 10, 1, 2352, 1232, 560, 209, 59, 11, 1, 6400, 3584, 1792, 769, 268, 70, 12, 1, 16896, 9984, 5376, 2561, 1037, 338, 82, 13, 1, 43520, 26880, 15360, 7937, 3598, 1375, 420, 95, 14, 1
Offset: 0

Author

Peter Luschny, Sep 23 2024

Keywords

Comments

Triangle T(m,n,k) is a Riordan array of the form ((1-x)^(m-1)*(1-2x)^(-m-1), x/(1-x)), for m = 3. - Igor Victorovich Statsenko, Feb 08 2025

Examples

			Triangle starts:
  [0]     1;
  [1]     6,     1;
  [2]    25,     7,     1;
  [3]    88,    32,     8,    1;
  [4]   280,   120,    40,    9,    1;
  [5]   832,   400,   160,   49,   10,    1;
  [6]  2352,  1232,   560,  209,   59,   11,   1;
  [7]  6400,  3584,  1792,  769,  268,   70,  12,  1;
  [8] 16896,  9984,  5376, 2561, 1037,  338,  82, 13,  1;
  [9] 43520, 26880, 15360, 7937, 3598, 1375, 420, 95, 14, 1;
  ...
Seen as an array of the columns:
  [0] 1,  6, 25,  88,  280,  832,  2352,  6400,  16896, ...
  [1] 1,  7, 32, 120,  400, 1232,  3584,  9984,  26880, ...
  [2] 1,  8, 40, 160,  560, 1792,  5376, 15360,  42240, ...
  [3] 1,  9, 49, 209,  769, 2561,  7937, 23297,  65537, ...
  [4] 1, 10, 59, 268, 1037, 3598, 11535, 34832, 100369, ...
  [5] 1, 11, 70, 338, 1375, 4973, 16508, 51340, 151709, ...
  [6] 1, 12, 82, 420, 1795, 6768, 23276, 74616, 226325, ...
		

Crossrefs

Column k: A055585 (k=0), A001794 (k=1), A001789 (k=2), A027608 (k=3), A055586 (k=4).
Cf. A145018 (diagonal n-2), A375549 (row sums), A049612 (alternating row sums), A122433.

Programs

  • Maple
    T := (m, n, k) -> binomial(n + 1, n - k)*hypergeom([m, k - n], [k + 2], -1);
    for n from 0 to 9 do seq(simplify(T(4, n, k)), k = 0..n) od;
    # As a binomial sum:
    T := (m, n, k) -> add(binomial(m + j, m)*binomial(n + 1, n - (j + k)), j = 0..n-k):
    for n from 0 to 9 do [n], seq(T(3, n, k), k = 0..n) od;
    # Alternative, generating the array of the columns:
    cgf := k -> (1 - x)^(2 - k) / (1 - 2*x)^4:
    ser := (k, len) -> series(cgf(k), x, len + 2):
    Tcol := (k, len) -> seq(coeff(ser(k, len), x, j), j = 0..len):
    seq(lprint([k], Tcol(k, 8)), k = 0..6);

Formula

T(m, n, k) = Sum_{j=0..n-k} binomial(m + j, m)*binomial(n + 1, n - (j + k)) for m = 3.
G.f. of column k: (1 - x)^(2 - k) / (1 - 2*x)^4.
Showing 1-3 of 3 results.