A055584 Triangle of partial row sums (prs) of triangle A055252.
1, 5, 1, 19, 6, 1, 63, 25, 7, 1, 192, 88, 32, 8, 1, 552, 280, 120, 40, 9, 1, 1520, 832, 400, 160, 49, 10, 1, 4048, 2352, 1232, 560, 209, 59, 11, 1, 10496, 6400, 3584, 1792, 769, 268, 70, 12, 1, 26624, 16896, 9984, 5376, 2561, 1037, 338, 82, 13, 1, 66304, 43520
Offset: 0
Examples
[0] 1 [1] 5, 1 [2] 19, 6, 1 [3] 63, 25, 7, 1 [4] 192, 88, 32, 8, 1 [5] 552, 280, 120, 40, 9, 1 [6] 1520, 832, 400, 160, 49, 10, 1 [7] 4048, 2352, 1232, 560, 209, 59, 11, 1 Fourth row polynomial (n=3): p(3, x)= 63 + 25*x + 7*x^2 + x^3.
Programs
-
Maple
T := (n, k) -> binomial(n, k)*hypergeom([4, k - n], [k + 1], -1): for n from 0 to 7 do seq(simplify(T(n, k)), k = 0..n) od; # Peter Luschny, Sep 23 2024
Formula
a(n, m)=sum(A055252(n, k), k=m..n), n >= m >= 0, a(n, m) := 0 if n
Column m recursion: a(n, m)= sum(a(j, m), j=m..n-1)+ A055252(n, m), n >= m >= 0, a(n, m) := 0 if n
G.f. for column m: (((1-x)^3)/(1-2*x)^4)*(x/(1-x))^m, m >= 0.
T(n, k) = binomial(n, k)*hypergeom([4, k - n], [k + 1], -1). - Peter Luschny, Sep 23 2024
A181332 Triangle read by rows: T(n,k) is the number of 2-compositions of n having k nonzero entries in the top row. A 2-composition of n is a nonnegative matrix with two rows, such that each column has at least one nonzero entry and whose entries sum up to n.
1, 1, 1, 2, 4, 1, 4, 12, 7, 1, 8, 32, 31, 10, 1, 16, 80, 111, 59, 13, 1, 32, 192, 351, 268, 96, 16, 1, 64, 448, 1023, 1037, 530, 142, 19, 1, 128, 1024, 2815, 3598, 2435, 924, 197, 22, 1, 256, 2304, 7423, 11535, 9843, 4923, 1477, 261, 25, 1, 512, 5120, 18943, 34832
Offset: 0
Comments
Examples
T(2,1)=4 because we have (1/1), (2/0), (1,0/0,1), and (0,1/1,0) (the 2-compositions are written as (top row / bottom row)). Triangle starts: 1; 1,1; 2,4,1; 4,12,7,1; 8,32,31,10,1; 16,80,111,59,13,1;
Links
- G. Castiglione, A. Frosini, E. Munarini, A. Restivo and S. Rinaldi, Combinatorial aspects of L-convex polyominoes, European J. Combin. 28 (2007), no. 6, 1724-1741.
Programs
-
Maple
T := proc (n, k) options operator, arrow: sum(2^j*binomial(k+j, k)*binomial(n-j-2, k-2), j = 0 .. n-k) end proc: for n from 0 to 10 do seq(T(n, k), k = 0 .. n) end do; # yields sequence in triangular form
Formula
T(n,k) = sum(2^j*binomial(k+j,k)*binomial(n-2-j,k-2), j=0..n-k).
G.f.: G(t,x) = (1-x)^2/(1-3*x+2*x^2-t*x).
The g.f. of column k is x^k/((1-2*x)^(k+1)*(1-x)^(k-1)) (we have a Riordan array).
T(n,k) = 3*T(n-1,k)+T(n-1,k-1)-2*T(n-2,k), with T(0,0)=T(1,0)=T(1,1)=T(2,2)=1, T(2,0)=2, T(2,1)=4, T(n,k)=0 if k<0 or if k>n. - _Philippe Deléham, Nov 26 2013
A375550 Triangle read by rows: T(m, n, k) = binomial(n + 1, n - k)*hypergeom([m, k - n], [k + 2], -1) for m = 4.
1, 6, 1, 25, 7, 1, 88, 32, 8, 1, 280, 120, 40, 9, 1, 832, 400, 160, 49, 10, 1, 2352, 1232, 560, 209, 59, 11, 1, 6400, 3584, 1792, 769, 268, 70, 12, 1, 16896, 9984, 5376, 2561, 1037, 338, 82, 13, 1, 43520, 26880, 15360, 7937, 3598, 1375, 420, 95, 14, 1
Offset: 0
Comments
Triangle T(m,n,k) is a Riordan array of the form ((1-x)^(m-1)*(1-2x)^(-m-1), x/(1-x)), for m = 3. - Igor Victorovich Statsenko, Feb 08 2025
Examples
Triangle starts: [0] 1; [1] 6, 1; [2] 25, 7, 1; [3] 88, 32, 8, 1; [4] 280, 120, 40, 9, 1; [5] 832, 400, 160, 49, 10, 1; [6] 2352, 1232, 560, 209, 59, 11, 1; [7] 6400, 3584, 1792, 769, 268, 70, 12, 1; [8] 16896, 9984, 5376, 2561, 1037, 338, 82, 13, 1; [9] 43520, 26880, 15360, 7937, 3598, 1375, 420, 95, 14, 1; ... Seen as an array of the columns: [0] 1, 6, 25, 88, 280, 832, 2352, 6400, 16896, ... [1] 1, 7, 32, 120, 400, 1232, 3584, 9984, 26880, ... [2] 1, 8, 40, 160, 560, 1792, 5376, 15360, 42240, ... [3] 1, 9, 49, 209, 769, 2561, 7937, 23297, 65537, ... [4] 1, 10, 59, 268, 1037, 3598, 11535, 34832, 100369, ... [5] 1, 11, 70, 338, 1375, 4973, 16508, 51340, 151709, ... [6] 1, 12, 82, 420, 1795, 6768, 23276, 74616, 226325, ...
Crossrefs
Programs
-
Maple
T := (m, n, k) -> binomial(n + 1, n - k)*hypergeom([m, k - n], [k + 2], -1); for n from 0 to 9 do seq(simplify(T(4, n, k)), k = 0..n) od; # As a binomial sum: T := (m, n, k) -> add(binomial(m + j, m)*binomial(n + 1, n - (j + k)), j = 0..n-k): for n from 0 to 9 do [n], seq(T(3, n, k), k = 0..n) od; # Alternative, generating the array of the columns: cgf := k -> (1 - x)^(2 - k) / (1 - 2*x)^4: ser := (k, len) -> series(cgf(k), x, len + 2): Tcol := (k, len) -> seq(coeff(ser(k, len), x, j), j = 0..len): seq(lprint([k], Tcol(k, 8)), k = 0..6);
Formula
T(m, n, k) = Sum_{j=0..n-k} binomial(m + j, m)*binomial(n + 1, n - (j + k)) for m = 3.
G.f. of column k: (1 - x)^(2 - k) / (1 - 2*x)^4.
Comments