A055616 Numbers, with an even number of digits, that are the sum of the squares of their two halves (leading zeros allowed only for the second half).
1233, 8833, 990100, 94122353, 1765038125, 2584043776, 7416043776, 8235038125, 9901009901, 116788321168, 123288328768, 876712328768, 883212321168, 999900010000, 13793103448276, 15348303604525, 84651703604525, 86206903448276, 91103202846976, 92318202663025
Offset: 1
Examples
8833 is ok, since 8833 = 88^2 + 33^2.
Links
- Robert Israel, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Maple
dmax:= 8: # to get all entries with at most 2*dmax digits Res:= NULL: for d from 2 to dmax do cands:= map(t -> subs(t,[x,y]), [isolve(x^2 + y^2 = 10^(2*d)+1)]); cands:= select(t -> t[1]::even and t[1]>=0 and t[2]>0, cands); cands:= map(t -> ([(10^d + t[1])/2, (t[2]+1)/2], [(10^d-t[1])/2, (t[2]+1)/2]), cands); cands:= select(t -> (t[1]>= 10^(d-1) and t[1] < 10^d and t[2] <= 10^d), cands); Res:= Res, op(map(t -> 10^d*t[1]+t[2], cands)); od: sort([Res]); # Robert Israel, May 10 2015
-
Mathematica
fQ[n_] := Block[{d = IntegerDigits@ n}, If[OddQ[Length@ d], False, Plus[FromDigits[Take[d, Length[d]/2]]^2, FromDigits[Take[d, -Length[d]/2]]^2]] == n]; Select[Range@ 1000000, fQ] (* Michael De Vlieger, May 09 2015 *)
-
PARI
select( {is_A055616(n, L=logint(n,10))=L%2 && n==norml2(divrem(n,10^(L\/2)))}, [1..10^5]) \\ M. F. Hasler, Dec 20 2024 for(L=1,oo, for(n=10^L,10^L++, is_A055616(n)&& print1(n", "))) \\ slow beyond 10^6
-
Python
def a(): n = 1 while n < 10**6: st = str(n) if len(st) % 2 == 0: s1 = st[:int(len(st)/2)] s2 = st[int(len(st)/2):int(len(st))] if int(s1)**2+int(s2)**2 == int(st): print(n,end=', ') n += 1 else: n += 1 else: n = 10*n a() # Derek Orr, Jul 08 2014
Extensions
Definition corrected by Derek Orr, Jul 09 2014
Comments