A055633 Number of nested algorithms a(m,n) where m is the number of items in a contaminated group and n is the total number of unclassified items (0 <= m <= n) (values read by antidiagonals).
1, 1, 1, 2, 1, 10, 1, 2, 280, 2, 10, 235200, 4, 20, 280, 173859840000, 40, 2800, 235200, 98238542885683200000000, 100, 11200, 65856000, 173859840000, 32169371027674057560745102540800000000000000000, 28000, 1317120000
Offset: 1
Examples
1; 1; 1 2; 1 10; 1 2 280; 2 10 235200; ...
References
- D.-Z. Du and F. K. Hwang, Combinatorial Group Testing and Its Applications, World Scientific, 2nd ed., 2000; p. 35.
Programs
-
Maple
with(combinat): n := 10: A := array(0..n, 0..n): for i from 0 to n do for j from 0 to n do A[i,j] := 0: od:od: A[0,0] := 1: A[0,1] := 1: for j from 2 to 10 do A[0,j] := binomial(2*(j+1)-2, j+1 - 1)/(j+1)*product(A[0,a], a=1..j-1) od: for c from 1 to 10 do for b from 1 to c do A[b,c] := binomial(2*(b)-2, b - 1)/(b)*product(A[0, c-x], x=1..b) od: od: for s from 0 to 10 do for n from s to 0 by -1 do if A[n,s-n]>0 then printf(`%d, `,A[n, s-n]) fi; od:od:
Formula
a(0, 0)=1, a(0, 1)=1, a(0, n) = C(n+1)*product(a(0, i), i=1..n-1) for n >= 2 and a(m, n) = C(m)*product(a(0, n-i), i=1..m) for 1 <= m <= n. Here C(n) equals the Catalan number given by binomial(2n-2, n-1)/n.
Comments