A055668 Number of inequivalent Eisenstein-Jacobi primes of norm n.
0, 0, 0, 1, 1, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0
Offset: 0
Examples
There are 6 Eisenstein-Jacobi primes of norm 3, omega-omega^2 times one of the 6 units [ +-1, +-omega, +-omega^2 ] but only one up to equivalence.
References
- R. K. Guy, Unsolved Problems in Number Theory, A16.
- L. W. Reid, The Elements of the Theory of Algebraic Numbers, MacMillan, NY, 1910, see Chap. VI.
Crossrefs
Programs
-
Mathematica
a[3] = 1; a[p_ /; PrimeQ[p] && Mod[p, 6] == 1] = 2; a[n_ /; PrimeQ[p = Sqrt[n]] && Mod[p, 3] == 2] = 1; a[] = 0; Table[a[n], {n, 0, 104}] (* _Jean-François Alcover, Aug 19 2013, after Franklin T. Adams-Watters *) Table[Which[PrimeQ[n]&&Mod[n,6]==1,2,n==3,1,PrimeQ[Sqrt[n]]&&Mod[ Sqrt[ n],3] == 2,1,True,0],{n,0,110}] (* Harvey P. Dale, Jun 17 2017 *)
Formula
a(n) = 2 if n is a prime = 1 (mod 6); a(n) = 1 if n = 3 or n = p^2 where p is a prime = 2 (mod 3); a(n) = 0 otherwise. - Franklin T. Adams-Watters, May 05 2006
Extensions
More terms from Franklin T. Adams-Watters, May 05 2006
Comments