A055773 a(n) = Product_{p in P_n} where P_n = {p prime, n/2 < p <= n }.
1, 1, 2, 6, 3, 15, 5, 35, 35, 35, 7, 77, 77, 1001, 143, 143, 143, 2431, 2431, 46189, 46189, 46189, 4199, 96577, 96577, 96577, 7429, 7429, 7429, 215441, 215441, 6678671, 6678671, 6678671, 392863, 392863, 392863, 14535931, 765049, 765049, 765049
Offset: 0
Keywords
Examples
n = 13, P_n = {7, 11, 13}, a(13) = 7*11*13 = 1001. Letting n = 14, the denominator (in lowest terms) of H(n)^2*n! = 131803989435744/143 is a(14)=143. - _John M. Campbell_, Mar 27 2016
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200 (corrected by Michel Marcus, Jan 19 2019)
- J. M. Campbell et al., A problem involving the product prod_{k=1..n} k^mu(k), where mu denotes the Möbius function, Mathematics Stack Exchange (2016).
- F. J. van de Bult, D. C. Gijswijt, J. P. Linderman, N. J. A. Sloane and Allan Wilks, A Slow-Growing Sequence Defined by an Unusual Recurrence, J. Integer Sequences, Vol. 10 (2007), #07.1.2.
- Index entries for sequences related to Gijswijt's sequence
Crossrefs
Programs
-
Maple
a := n -> mul(k,k=select(isprime,[$iquo(n,2)+1..n])); # Peter Luschny, Jun 20 2009 A055773 := n -> numer(n!/iquo(n,2)!^4); # Peter Luschny, Jul 30 2011
-
Mathematica
Table[Numerator[n!/Floor[n/2]!^4], {n, 0, 40}] (* Michael De Vlieger, Mar 27 2016 *)
-
PARI
q=1;for(n=2,41,print1(q,",");q=if(isprime(n),q*n,q/gcd(q,n))) \\ Klaus Brockhaus, May 02 2004
-
PARI
a(n) = k=1;forprime(p=nextprime(n\2+1),precprime(n),k=k*p);k \\ Klaus Brockhaus, May 02 2004
-
PARI
a(n) = prod(i=primepi(n/2)+1,primepi(n),prime(i)) \\ John M. Campbell, Mar 27 2016
-
Python
from math import prod from sympy import primerange def A055773(n): return prod(primerange((n>>1)+1,n+1)) # Chai Wah Wu, Apr 13 2024
Formula
a(n) = numerator(A056040(n)^2/n!).
a(n) = numerator(A056040(n)/floor(n/2)!^2).
a(n) = numerator(n!/floor(n/2)!^4). - Peter Luschny, Jul 30 2011
a(n) = product of primes p such that n/2 < p <= n. - Klaus Brockhaus, May 02 2004
a(n) = Product_{i=pi(n/2)+1..pi(n)} prime(i), where pi denotes the prime counting function and prime(i) denotes the i-th prime number. - John M. Campbell, Mar 27 2016
Extensions
Entry revised by N. J. A. Sloane, Jan 07 2007
Simpler definition based on a comment of Klaus Brockhaus, set offset to 0 and prepended 1 to data. - Peter Luschny, Mar 09 2013
Comments