cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055773 a(n) = Product_{p in P_n} where P_n = {p prime, n/2 < p <= n }.

Original entry on oeis.org

1, 1, 2, 6, 3, 15, 5, 35, 35, 35, 7, 77, 77, 1001, 143, 143, 143, 2431, 2431, 46189, 46189, 46189, 4199, 96577, 96577, 96577, 7429, 7429, 7429, 215441, 215441, 6678671, 6678671, 6678671, 392863, 392863, 392863, 14535931, 765049, 765049, 765049
Offset: 0

Views

Author

Labos Elemer, Jul 12 2000

Keywords

Comments

Old name: Product of primes p for which p divides n! but p^2 does not (i.e. ord_p(n!)=1). - Dion Gijswijt (gijswijt(AT)science.uva.nl), Jan 07 2007
Squarefree part of n! divided by gcd(Q,F), where Q is the largest square divisor and F is the squarefree part of n!. - Labos Elemer, Jul 12 2000
a(1) = 1, a(n) = n*a(n-1) if n is a prime else a(n) = least integer multiple of a(n-1)/n. - Amarnath Murthy, Apr 29 2004
Let P(i) denote the primorial number A034386(i). Then a(n) = P(n)/P(floor(n/2)). - Peter Luschny, Mar 05 2011
Letting H(n) = 1 + 1/2 + ... + 1/n denote the n-th harmonic number, it is known that a(n) is equal to the denominator (in lowest terms) of H(n)^2*n! for n >= 6 (see below example). - John M. Campbell, Mar 27 2016
For all n satisfying 6 <= n < 897, a(n) = A130087(n). - John M. Campbell, Mar 27 2016
It is also known that a(n) is equal to lcm^2(1, 2, ..., n)/gcd(lcm^2(1, 2, ..., n), n!). - John M. Campbell, Apr 04 2016

Examples

			n = 13, P_n = {7, 11, 13}, a(13) = 7*11*13 = 1001.
Letting n = 14, the denominator (in lowest terms) of H(n)^2*n! = 131803989435744/143 is a(14)=143. - _John M. Campbell_, Mar 27 2016
		

Crossrefs

Programs

  • Maple
    a := n -> mul(k,k=select(isprime,[$iquo(n,2)+1..n])); # Peter Luschny, Jun 20 2009
    A055773 := n -> numer(n!/iquo(n,2)!^4); # Peter Luschny, Jul 30 2011
  • Mathematica
    Table[Numerator[n!/Floor[n/2]!^4], {n, 0, 40}] (* Michael De Vlieger, Mar 27 2016 *)
  • PARI
    q=1;for(n=2,41,print1(q,",");q=if(isprime(n),q*n,q/gcd(q,n))) \\ Klaus Brockhaus, May 02 2004
    
  • PARI
    a(n) = k=1;forprime(p=nextprime(n\2+1),precprime(n),k=k*p);k \\ Klaus Brockhaus, May 02 2004
    
  • PARI
    a(n) = prod(i=primepi(n/2)+1,primepi(n),prime(i)) \\ John M. Campbell, Mar 27 2016
    
  • Python
    from math import prod
    from sympy import primerange
    def A055773(n): return prod(primerange((n>>1)+1,n+1)) # Chai Wah Wu, Apr 13 2024

Formula

a(n) = numerator(A056040(n)^2/n!).
a(n) = numerator(A056040(n)/floor(n/2)!^2).
a(n) = numerator(n!/floor(n/2)!^4). - Peter Luschny, Jul 30 2011
a(n) = product of primes p such that n/2 < p <= n. - Klaus Brockhaus, May 02 2004
a(n) = A055204(n)/A055230(n) = A055231(n!) = A007913(n!)/A055229(n!).
a(n) = Product_{i=pi(n/2)+1..pi(n)} prime(i), where pi denotes the prime counting function and prime(i) denotes the i-th prime number. - John M. Campbell, Mar 27 2016

Extensions

Entry revised by N. J. A. Sloane, Jan 07 2007
Simpler definition based on a comment of Klaus Brockhaus, set offset to 0 and prepended 1 to data. - Peter Luschny, Mar 09 2013