cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055789 a(n) = binomial(n, round(sqrt(n))).

Original entry on oeis.org

1, 1, 2, 3, 6, 10, 15, 35, 56, 84, 120, 165, 220, 715, 1001, 1365, 1820, 2380, 3060, 3876, 4845, 20349, 26334, 33649, 42504, 53130, 65780, 80730, 98280, 118755, 142506, 736281, 906192, 1107568, 1344904, 1623160, 1947792, 2324784, 2760681
Offset: 0

Views

Author

Henry Bottomley, Jul 13 2000

Keywords

Examples

			a(9) = C(9,3) = 9!/(3!*6!) = 84
		

Crossrefs

Programs

  • Magma
    [Binomial(n, Round(Sqrt(n))): n in [0..40]]; // G. C. Greubel, Jan 25 2020
    
  • Maple
    seq( binomial(n, round(sqrt(n))), n=0..40); # G. C. Greubel, Jan 25 2020
  • Mathematica
    Table[Binomial[n, Round[Sqrt[n]]], {n,0,40}] (* G. C. Greubel, Jan 25 2020 *)
  • PARI
    vector(40, n, binomial(n, round(sqrt(n))) ) \\ G. C. Greubel, Jan 25 2020
    
  • Python
    from math import comb, isqrt
    def A055789(n): return comb(n,(m:=isqrt(n))+ int((n-m*(m+1)<<2)>=1)) # Chai Wah Wu, Jul 29 2022
  • Sage
    [binomial(n, round(sqrt(n))) for n in (0..40)] # G. C. Greubel, Jan 25 2020
    

Formula

a(n^2) = A014062(n).