cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055804 a(n) = T(n,n-4), array T as in A055801.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 8, 12, 19, 26, 40, 51, 76, 92, 133, 155, 218, 247, 339, 376, 505, 551, 726, 782, 1013, 1080, 1378, 1457, 1834, 1926, 2395, 2501, 3076, 3197, 3893, 4030, 4863, 5017, 6004, 6176, 7335, 7526, 8876, 9087
Offset: 4

Views

Author

Clark Kimberling, May 28 2000

Keywords

Crossrefs

Programs

  • GAP
    Concatenation([1], List([5..50], n-> (2*n^4 -28*n^3 +178*n^2 -416*n +441 +(-1)^n*(4*n^3 -90*n^2 + 704*n -1977))/768 )); # G. C. Greubel, Jan 24 2020
  • Magma
    [1] cat [(2*n^4 -28*n^3 +178*n^2 -416*n +441 +(-1)^n*(4*n^3 -90*n^2 + 704*n -1977))/768: n in [5..50]]; // G. C. Greubel, Jan 24 2020
    
  • Maple
    seq( `if`(n=4, 1, (2*n^4 -28*n^3 +178*n^2 -416*n +441 +(-1)^n*(4*n^3 -90*n^2 + 704*n -1977))/768), n=4..50); # G. C. Greubel, Jan 24 2020
  • Mathematica
    Table[If[n==4, 1, (2*n^4 -28*n^3 +178*n^2 -416*n +441 +(-1)^n*(4*n^3 -90*n^2 + 704*n -1977))/768], {n,4,50}] (* G. C. Greubel, Jan 24 2020 *)
  • PARI
    vector(50, n, my(m=n+3); if(m==4, 1, (2*m^4 -28*m^3 +178*m^2 -416*m +441 +(-1)^m*(4*m^3 -90*m^2 + 704*m -1977))/768)) \\ G. C. Greubel, Jan 24 2020
    
  • Sage
    [1]+[(2*n^4 -28*n^3 +178*n^2 -416*n +441 +(-1)^n*(4*n^3 -90*n^2 + 704*n -1977))/768 for n in (5..50)] # G. C. Greubel, Jan 24 2020
    

Formula

G.f.: x^4*(-1 +4*x^2 -x^3 -7*x^4 +2*x^5 +5*x^6 -2*x^7 -2*x^8 +x^9)/((1-x)^5 (1+x)^4). - R. J. Mathar, Jul 10 2012
From G. C. Greubel, Jan 24 2020: (Start)
a(n) = (2*n^4 -28*n^3 +178*n^2 -416*n +441 +(-1)^n*(4*n^3 -90*n^2 + 704*n -1977))/768 for n>4, with a(4) = 1.
E.g.f.: ( (768 -768*x +192*x^2 -64*x^3 +16*x^4) +(-768 -441*x +15*x^2 -10*x^3 +x^4)*cosh(x) +(1209 +177*x +93*x^2 -6*x^3 +x^4)*sinh(x) )/384. (End)