A055830 Triangle T read by rows: diagonal differences of triangle A037027.
1, 1, 0, 2, 1, 0, 3, 3, 1, 0, 5, 7, 4, 1, 0, 8, 15, 12, 5, 1, 0, 13, 30, 31, 18, 6, 1, 0, 21, 58, 73, 54, 25, 7, 1, 0, 34, 109, 162, 145, 85, 33, 8, 1, 0, 55, 201, 344, 361, 255, 125, 42, 9, 1, 0, 89, 365, 707, 850, 701, 413, 175, 52, 10, 1, 0, 144, 655, 1416, 1918, 1806, 1239, 630, 236, 63, 11, 1, 0
Offset: 0
Examples
Triangle begins: 1 1, 0 2, 1, 0 3, 3, 1, 0 5, 7, 4, 1, 0 8, 15, 12, 5, 1, 0 13, 30, 31, 18, 6, 1, 0 21, 58, 73, 54, 25, 7, 1, 0 34, 109, 162, 145, 85, 33, 8, 1, 0 55, 201, 344, 361, 255, 125, 42, 9, 1, 0 ...
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- Clark Kimberling, Path-counting and Fibonacci numbers, Fib. Quart. 40 (4) (2002) 328-338, Example 3D.
Crossrefs
Programs
-
Magma
function T(n,k) if k lt 0 or k gt n then return 0; elif k eq 0 then return Fibonacci(n+1); elif n eq 1 and k eq 1 then return 0; else return T(n-1,k-1) + T(n-1,k) + T(n-2,k); end if; return T; end function; [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 21 2020
-
Maple
with(combinat); T:= proc(n, k) option remember; if k<0 or k>n then 0 elif k=0 then fibonacci(n+1) elif n=1 and k=1 then 0 else T(n-1, k-1) + T(n-1, k) + T(n-2, k) fi; end: seq(seq(T(n, k), k=0..n), n=0..12); # G. C. Greubel, Jan 21 2020
-
Mathematica
T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[k==0, Fibonacci[n+1], If[n==1 && k==1, 0, T[n-1, k-1] + T[n-1, k] + T[n-2, k]]]]; Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Dec 19 2017 *)
-
PARI
T(n,k) = if(k<0 || k>n, 0, if(k==0, fibonacci(n+1), if(n==1 && k==1, 0, T(n-1, k-1) + T(n-1, k) + T(n-2, k) ))); for(n=0,12, for(k=0, n, print1(T(n,k), ", "))) \\ G. C. Greubel, Jan 21 2020
-
Sage
@CachedFunction def T(n, k): if (k<0 or k>n): return 0 elif (k==0): return fibonacci(n+1) elif (n==1 and k==1): return 0 else: return T(n-1, k-1) + T(n-1, k) + T(n-2, k) [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jan 21 2020
Formula
G.f.: (1-y*z) / (1-y*(1+y+z)).
T(i, j) = R(i-j, j), where R(0, 0)=1, R(0, j)=0 for j >= 1, R(1, j)=1 for j >= 0, R(i, j) = Sum_{k=0..j} (R(i-2, k) + R(i-1, k)) for i >= 1, j >= 1.
Sum_{k=0..n} x^k*T(n,k) = A039834(n-2), A000012(n), A000045(n+1), A001333(n), A003688(n), A015448(n), A015449(n), A015451(n), A015453(n), A015454(n), A015455(n), A015456(n), A015457(n) for x= -2,-1,0,1,2,3,4,5,6,7,8,9,10. - Philippe Deléham, Oct 22 2006
Sum_{k=0..floor(n/2)} T(n-k,k) = A011782(n). - Philippe Deléham, Oct 22 2006
Triangle T(n,k), 0 <= k <= n, given by [1, 1, -1, 0, 0, 0, 0, 0, ...] DELTA [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 05 2006
T(n,0) = Fibonacci(n+1) = A000045(n+1). Sum_{k=0..n} T(n,k) = A001333(n). T(n,k)=0 if k > n or if k < 0, T(0,0)=1, T(1,1)=0, T(n,k) = T(n-1,k-1) + T(n-1,k) + T(n-2,k). - Philippe Deléham, Nov 05 2006
Extensions
Edited by Ralf Stephan, Jan 12 2005
Comments