cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055831 T(n,n-4), where T is the array in A055830.

Original entry on oeis.org

5, 15, 31, 54, 85, 125, 175, 236, 309, 395, 495, 610, 741, 889, 1055, 1240, 1445, 1671, 1919, 2190, 2485, 2805, 3151, 3524, 3925, 4355, 4815, 5306, 5829, 6385, 6975, 7600, 8261, 8959, 9695, 10470, 11285, 12141, 13039
Offset: 4

Views

Author

Clark Kimberling, May 28 2000

Keywords

Crossrefs

Cf. A055830.

Programs

  • GAP
    List([4..40], n-> (n-3)*(n^2+6*n-10)/6); # G. C. Greubel, Jan 21 2020
  • Magma
    [(n-3)*(n^2+6*n-10)/6: n in [4..40]]; // G. C. Greubel, Jan 21 2020
    
  • Maple
    seq( (n-3)*(n^2+6*n-10)/6, n=4..40); # G. C. Greubel, Jan 21 2020
  • Mathematica
    Table[(n-3)*(n^2+6*n-10)/6, {n,4,40}] (* G. C. Greubel, Jan 21 2020 *)
  • PARI
    a(n) = (n-3)*(n^2+6*n-10)/6; \\ G. C. Greubel, Jan 21 2020
    
  • Sage
    [(n-3)*(n^2+6*n-10)/6 for n in (4..40)] # G. C. Greubel, Jan 21 2020
    

Formula

a(n) = (n-3)*(n^2+6*n-10)/6, n>3.
G.f.: x^4*(5-5*x+x^2)/(1-x)^4. - R. J. Mathar, Mar 13 2016
E.g.f.: (-30 - 6*x + 3*x^2 + (30 - 24*x + 6*x^2 + x^3)*exp(x))/6. - G. C. Greubel, Jan 21 2020