A055838 T(2n+4,n), where T is the array in A055830.
5, 30, 162, 850, 4425, 22995, 119560, 622512, 3246750, 16963375, 88779900, 465386220, 2443204946, 12844119225, 67608235800, 356288599640, 1879625199825, 9925931817045, 52464942758250, 277546278287250
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..500
Crossrefs
Cf. A055830.
Programs
-
Maple
with(combinat); T:= proc(n, k) option remember; if k<0 or k>n then 0 elif k=0 then fibonacci(n+1) elif n=1 and k=1 then 0 else T(n-1, k-1) + T(n-1, k) + T(n-2, k) fi; end: seq(T(2*n+4, n), n=0..30); # G. C. Greubel, Jan 21 2020
-
Mathematica
T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[k==0, Fibonacci[n+1], If[n==1 && k==1, 0, T[n-1, k-1] + T[n-1, k] + T[n-2, k]]]]; Table[T[2*n+4, n], {n,0,30}] (* G. C. Greubel, Jan 21 2020 *)
-
Sage
@CachedFunction def T(n, k): if (k<0 and k>n): return 0 elif (k==0): return fibonacci(n+1) elif (n==1 and k==1): return 0 else: return T(n-1, k-1) + T(n-1, k) + T(n-2, k) [T(2*n+4, n) for n in (0..30)] # G. C. Greubel, Jan 21 2020
Formula
Conjecture: 5*n*(n+3)*(n-1)*a(n) -2*(n-1)*(11*n+8)*(n+2)*a(n-1) -3*(3*n-1)*(3*n-2)*(n+1)*a(n-2)=0. - R. J. Mathar, Mar 13 2016