A055855 Convolution of A055854 with A011782.
0, 1, 10, 64, 328, 1462, 5908, 22180, 78592, 265729, 864146, 2719028, 8316200, 24814832, 72453344, 207502016, 584094080, 1618757120, 4423347200, 11932579840, 31812874240, 83901227008, 219074805760, 566754967552
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (18,-144,672,-2016,4032,-5376,4608,-2304,512).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 30); [0] cat Coefficients(R!( x*(1-x)^8/(1-2*x)^9 )); // G. C. Greubel, Jan 16 2020 -
Maple
seq(coeff(series(x*(1-x)^8/(1-2*x)^9, x, n+1), x, n), n = 0..30); # G. C. Greubel, Jan 16 2020
-
Mathematica
CoefficientList[Series[x*(1-x)^8/(1-2*x)^9, {x,0,30}], x] (* G. C. Greubel, Jan 16 2020 *)
-
PARI
my(x='x+O('x^30)); concat([0], Vec(x*(1-x)^8/(1-2*x)^9)) \\ G. C. Greubel, Jan 16 2020
-
Sage
def A055855_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( x*(1-x)^8/(1-2*x)^9 ).list() A055855_list(30) # G. C. Greubel, Jan 16 2020
Formula
a(n) = T(n, 8) = A055587(n+8, 9).
G.f.: x*(1-x)^8/(1-2*x)^9.
Comments