A055872 a(n) and floor(a(n)/8) are both squares; i.e., squares that remain squares when written in base 8 and last digit is removed.
0, 1, 4, 9, 36, 289, 1156, 9801, 39204, 332929, 1331716, 11309769, 45239076, 384199201, 1536796804, 13051463049, 52205852196, 443365544449, 1773462177796, 15061377048201, 60245508192804
Offset: 1
Examples
a(5) = 289 because 289 = 17^2 = 441 base 8 and 44 base 8 = 36 = 6^2.
Links
- M. F. Hasler, Truncated squares, OEIS wiki, Jan 16 2012.
- Index to sequences related to truncating digits of squares.
- Index entries for linear recurrences with constant coefficients, signature (0,35,0,-35,0,1)
Programs
-
Mathematica
Select[Range[0,8*10^6]^2,IntegerQ[Sqrt[FromDigits[Most[ IntegerDigits[ #,8]], 8]]]&] (* Harvey P. Dale, Aug 02 2016 *)
-
PARI
b=8;for(n=1,200,issquare(n^2\b) && print1(n^2,",")) \\ M. F. Hasler, Jan 15 2012
Formula
a(n) = A204514(n)^2. - M. F. Hasler, Jan 15 2012
Empirical g.f.: -x^2*(4*x+1)*(9*x^4-26*x^2+1) / ((x-1)*(x+1)*(x^2-6*x+1)*(x^2+6*x+1)). - Colin Barker, Sep 15 2014
Extensions
More terms added and offset changed to 1 by M. F. Hasler, Jan 15 2012
Comments