A055883 Exponential transform of Pascal's triangle A007318.
1, 1, 1, 2, 4, 2, 5, 15, 15, 5, 15, 60, 90, 60, 15, 52, 260, 520, 520, 260, 52, 203, 1218, 3045, 4060, 3045, 1218, 203, 877, 6139, 18417, 30695, 30695, 18417, 6139, 877, 4140, 33120, 115920, 231840, 289800, 231840, 115920, 33120, 4140, 21147
Offset: 0
Examples
1; 1, 1; 2, 4, 2; 5, 15, 15, 5; 15, 60, 90, 60, 15; ...
Links
Programs
-
Mathematica
T[ n_, k_] := Binomial[n, k] * BellB[n]; (* Michael Somos, Apr 09 2025 *)
-
PARI
T(n, k) = binomial(n, k) * sum(j=0, n, stirling(n, j, 2)); /* Michael Somos, Apr 09 2025 */
Formula
a(n,k) = Bell(n)*C(n,k).
E.g.f.: A(x,y) = exp(exp(x+xy)-1).
Comments