A055884 Euler transform of partition triangle A008284.
1, 1, 2, 1, 2, 3, 1, 4, 4, 5, 1, 4, 8, 7, 7, 1, 6, 12, 16, 12, 11, 1, 6, 17, 25, 28, 19, 15, 1, 8, 22, 43, 49, 48, 30, 22, 1, 8, 30, 58, 87, 88, 77, 45, 30, 1, 10, 36, 87, 134, 167, 151, 122, 67, 42, 1, 10, 45, 113, 207, 270, 296, 247, 185, 97, 56, 1, 12, 54, 155, 295, 448, 510, 507, 394, 278, 139, 77
Offset: 1
Examples
From _Gus Wiseman_, Nov 09 2018: (Start) Triangle begins: 1 1 2 1 2 3 1 4 4 5 1 4 8 7 7 1 6 12 16 12 11 1 6 17 25 28 19 15 1 8 22 43 49 48 30 22 1 8 30 58 87 88 77 45 30 ... The fifth row {1, 4, 8, 7, 7} counts the following multiset partitions: {{5}} {{1,4}} {{1,1,3}} {{1,1,1,2}} {{1,1,1,1,1}} {{2,3}} {{1,2,2}} {{1},{1,1,2}} {{1},{1,1,1,1}} {{1},{4}} {{1},{1,3}} {{1,1},{1,2}} {{1,1},{1,1,1}} {{2},{3}} {{1},{2,2}} {{2},{1,1,1}} {{1},{1},{1,1,1}} {{2},{1,2}} {{1},{1},{1,2}} {{1},{1,1},{1,1}} {{3},{1,1}} {{1},{2},{1,1}} {{1},{1},{1},{1,1}} {{1},{1},{3}} {{1},{1},{1},{2}} {{1},{1},{1},{1},{1}} {{1},{2},{2}} (End)
Links
- Alois P. Heinz, Rows n = 1..200, flattened
- N. J. A. Sloane, Transforms
Crossrefs
Programs
-
Maple
h:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0, h(n, i-1)+x*h(n-i, min(n-i, i))))) end: g:= proc(n, i, j) option remember; expand(`if`(j=0, 1, `if`(i<0, 0, add( g(n, i-1, j-k)*x^(i*k)*binomial(coeff(h(n$2), x, i)+k-1, k), k=0..j)))) end: b:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1)*g(i$2, j), j=0..n/i)))) end: T:= (n, k)-> coeff(b(n$2), x, k): seq(seq(T(n,k), k=1..n), n=1..12); # Alois P. Heinz, Feb 17 2023
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; Table[Length[Join@@mps/@IntegerPartitions[n,{k}]],{n,5},{k,n}] (* Gus Wiseman, Nov 09 2018 *)
Comments