cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055895 Inverse Moebius transform of powers of 2.

Original entry on oeis.org

1, 2, 6, 10, 22, 34, 78, 130, 278, 522, 1062, 2050, 4190, 8194, 16518, 32810, 65814, 131074, 262734, 524290, 1049654, 2097290, 4196358, 8388610, 16781662, 33554466, 67117062, 134218250, 268451990, 536870914, 1073775726, 2147483650, 4295033110, 8589936650
Offset: 0

Views

Author

Christian G. Bower, Jun 09 2000

Keywords

Comments

Row sums of A055894.

Examples

			G.f. = 1 + 2*x + 6*x^2 + 10*x^3 + 22*x^4 + 34*x^5 + 78*x^6 + 130*x^7 + ...
		

Crossrefs

Cf. A034729, A113705 (binary), A339916.
Cf. A055894.

Programs

  • Mathematica
    Table[Plus @@ Map[Function[d, 2^d], Divisors[n]], {n, 0, 30}] (* Olivier Gérard, Jan 01 2012 *)
    a[0]=1; a[n_] := DivisorSum[n, 2^#&]; Array[a, 40, 0] (* Jean-François Alcover, Dec 01 2015 *)
  • PARI
    a(n)=if(n<1,1,polcoeff(sum(k=1,n,1/(1-2*x^k),x*O(x^n)),n))
    
  • PARI
    a(n)=if(n<1,1,sumdiv(n,d,2^d)); /* Joerg Arndt, Aug 14 2012 */

Formula

G.f.: 1 + Sum_{k>=1} 2^k*x^k/(1-x^k). - Benoit Cloitre, Apr 21 2003
a(n) = Sum_{d divides n} 2^d. - Olivier Gérard, Jan 01 2012
a(n) = 2 * A034729(n) for n >= 1. - Joerg Arndt, Aug 14 2012
G.f.: 1 + Sum_{k>=1} 2*x^k/(1-2*x^k). - Joerg Arndt, Mar 28 2013